Cancer Detection Using Aritifical Neural Network and Support Vector Machine: A Comparative Study

2013 ◽  
Vol 65 (1) ◽  
Author(s):  
Sharifah Hafizah Sy Ahmad Ubaidillah ◽  
Roselina Sallehuddin ◽  
Nor Azizah Ali

Accurate diagnosis of cancer plays an importance role in order to save human life. The results of the diagnosis indicate by the medical experts are mostly differentiated based on the experience of different medical experts. This problem could risk the life of the cancer patients. From the literature, it has been found that Artificial Intelligence (AI) machine learning classifiers such as an Artificial Neural Network (ANN) and Support Vector Machine (SVM) can help doctors in diagnosing cancer more precisely. Both of them have been proven to produce good performance of cancer classification accuracy. The aim of this study is to compare the performance of the ANN and SVM classifiers on four different cancer datasets. For breast cancer and liver cancer dataset, the features of the data are based on the condition of the organs  which is also called as standard data while for prostate cancer and ovarian cancer; both of these datasets are in the form of gene expression data. The datasets including benign and malignant tumours is specified to classify with proposed methods. The performance of both classifiers is evaluated using four different measuring tools which are accuracy, sensitivity, specificity and Area under Curve (AUC). This research has shown that the SVM classifier can obtain good performance in classifying cancer data compare to ANN classifier.

Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


2014 ◽  
Vol 2 (3) ◽  
pp. 40-50 ◽  
Author(s):  
Kazunori Iwata ◽  
Toyoshiro Nakasima ◽  
Yoshiyuki Anan ◽  
Naohiro Ishii

Previous investigation focused on the prediction of total and errors for embedded software development projects using an artificial neural network (ANN). However, methods using ANNs have reached their improvement limits, since an appropriate value is estimated using what is known as point estimation in statistics. This paper proposes a method for predicting the number of errors for embedded software development projects using interval estimation provided by a support vector machine and ANN.


Author(s):  
M. Boutaounte ◽  
Y. Ouadid

<p>In this paper we present method of features extraction based on decomposition of the characters into several simple geometric shapes (segment, arc) by detecting the branch points and end points, as it explained follow a new methods are using to treated the obtained information in order to decide if the characters need to add more key points also in this step we extracte the type of the shapes (segment or arc) and the orientation. The next step of characters recognition different methods are used such as neural network (NN), K-mean and support vector machine (SVM) classifier. The results shown in this paper are obtained using the IRCAM database.</p>


2021 ◽  
Vol 2021 (1) ◽  
pp. 1036-1043
Author(s):  
Harifa Hananti ◽  
Kartika Sari

Kasus kekurangan gizi atau gizi buruk pada balita menyebar hampir di seluruh provinsi yang ada di Indonesia. Provinsi Sulawesi Barat merupakan salah satu provinsi yang memiliki nilai persentase kekurangan gizi pada balita, sehingga dari faktor-faktor yang mempengaruhi gizi balita sangat penting untuk dilakukan dalam pengklasifikasian. Data yang digunakan adalah data dari Puskesmas Salissingan pada Tahun 2018. Penelitian ini bertujuan untuk melakukan pengklasifikasian dan mendapatkan metode terbaik pada gizi balita (gizi baik & gizi kurang) di Puskesmas Salissingan Sulawesi Barat dengan metode support vector machine (SVM) dan artificial neural network (ANN). Metode klasifikasi yang terbaik dalam melihat ukuran ketepatan klasifikasi adalah metode SVM dan ANN. Dari hasil analisis diperoleh ukuran ketepatan klasifikasi pada metode ANN (accuracy=94,82%, precision=51.00%, recall=51.09%, dan AUC=0.910), sedangkan pada metode SVM (accuracy=94,46%, precision=46.08%, recall=50.59%, dan AUC=0.900) dan dari hasil ukuran tersebut diperoleh bahwa metode yang terbaik dalam pengklasifikasian gizi balita di Puskesmas Salissingan Sulawesi Barat adalah ANN.


2020 ◽  
Vol 10 (7) ◽  
pp. 1746-1753
Author(s):  
Lan Liu ◽  
Xiankun Sun ◽  
Chengfan Li ◽  
Yongmei Lei

Conventional methods of medical text data classification, neglect of context among different words and semantic information, has a poor text description, classification effect and generalization capability and robustness. To tackle the inefficiencies and low precision in the classification of medical text data, in this paper, we presented a new classification method with improved convolutional neural network (CNN) and support vector machine (SVM), i.e., CNN-SVM method. In the method, some convolution kernel filters that contribute greatly to the CNN model are first selected by the average response energy (ARE) value, and then used to simplify and reconstruct the CNN model. Next, the SVM classifier was optimized by firefly algorithm (FA) and context information to overcome the disadvantages of over-saturation and over-training in SVM classification. Finally, the presented CNN-SVM method is tested by the simulation experiment and the true classification of medical text data. The experimental results show that the presented CNN-SVM method in this paper can significantly reduce the complexity and amount of computation compared to the conventional methods, and further promote the computational efficiency and classification accuracy of medical text data.


Sign in / Sign up

Export Citation Format

Share Document