Tifinagh Characters Recognition Using Simple Geometric Shapes

Author(s):  
M. Boutaounte ◽  
Y. Ouadid

<p>In this paper we present method of features extraction based on decomposition of the characters into several simple geometric shapes (segment, arc) by detecting the branch points and end points, as it explained follow a new methods are using to treated the obtained information in order to decide if the characters need to add more key points also in this step we extracte the type of the shapes (segment or arc) and the orientation. The next step of characters recognition different methods are used such as neural network (NN), K-mean and support vector machine (SVM) classifier. The results shown in this paper are obtained using the IRCAM database.</p>

2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


2020 ◽  
Vol 10 (7) ◽  
pp. 1746-1753
Author(s):  
Lan Liu ◽  
Xiankun Sun ◽  
Chengfan Li ◽  
Yongmei Lei

Conventional methods of medical text data classification, neglect of context among different words and semantic information, has a poor text description, classification effect and generalization capability and robustness. To tackle the inefficiencies and low precision in the classification of medical text data, in this paper, we presented a new classification method with improved convolutional neural network (CNN) and support vector machine (SVM), i.e., CNN-SVM method. In the method, some convolution kernel filters that contribute greatly to the CNN model are first selected by the average response energy (ARE) value, and then used to simplify and reconstruct the CNN model. Next, the SVM classifier was optimized by firefly algorithm (FA) and context information to overcome the disadvantages of over-saturation and over-training in SVM classification. Finally, the presented CNN-SVM method is tested by the simulation experiment and the true classification of medical text data. The experimental results show that the presented CNN-SVM method in this paper can significantly reduce the complexity and amount of computation compared to the conventional methods, and further promote the computational efficiency and classification accuracy of medical text data.


2013 ◽  
Vol 65 (1) ◽  
Author(s):  
Sharifah Hafizah Sy Ahmad Ubaidillah ◽  
Roselina Sallehuddin ◽  
Nor Azizah Ali

Accurate diagnosis of cancer plays an importance role in order to save human life. The results of the diagnosis indicate by the medical experts are mostly differentiated based on the experience of different medical experts. This problem could risk the life of the cancer patients. From the literature, it has been found that Artificial Intelligence (AI) machine learning classifiers such as an Artificial Neural Network (ANN) and Support Vector Machine (SVM) can help doctors in diagnosing cancer more precisely. Both of them have been proven to produce good performance of cancer classification accuracy. The aim of this study is to compare the performance of the ANN and SVM classifiers on four different cancer datasets. For breast cancer and liver cancer dataset, the features of the data are based on the condition of the organs  which is also called as standard data while for prostate cancer and ovarian cancer; both of these datasets are in the form of gene expression data. The datasets including benign and malignant tumours is specified to classify with proposed methods. The performance of both classifiers is evaluated using four different measuring tools which are accuracy, sensitivity, specificity and Area under Curve (AUC). This research has shown that the SVM classifier can obtain good performance in classifying cancer data compare to ANN classifier.


2014 ◽  
Vol 556-562 ◽  
pp. 2953-2956
Author(s):  
Tong Gao ◽  
Quan Liu ◽  
Yi Han Gao ◽  
Lei Yue

Aiming to solve the difficulty of recognize corrosion types for complex CO2 corrosion process with data, this paper presents a recognition method of CO2 corrosion types using SVM as recognizer. Surface morphology images of N8 steel corroded by CO2 are decomposed into sub-images by wavelet after gray processing and gray enhancement, and energy information of sub-images is extracted as eigenvector. SVM classifier is constructed based on the three sample sets of no corrosion, pitting corrosion and uniform corrosion, which can recognize CO2 corrosion types accurately. Superiority of this method is verified by comparison with recognition result of neural network.


2018 ◽  
Author(s):  
Youshan Zhang ◽  
Jon-Patrick Allem ◽  
Jennifer Beth Unger ◽  
Tess Boley Cruz

BACKGROUND Instagram, with millions of posts per day, can be used to inform public health surveillance targets and policies. However, current research relying on image-based data often relies on hand coding of images, which is time-consuming and costly, ultimately limiting the scope of the study. Current best practices in automated image classification (eg, support vector machine (SVM), backpropagation neural network, and artificial neural network) are limited in their capacity to accurately distinguish between objects within images. OBJECTIVE This study aimed to demonstrate how a convolutional neural network (CNN) can be used to extract unique features within an image and how SVM can then be used to classify the image. METHODS Images of waterpipes or hookah (an emerging tobacco product possessing similar harms to that of cigarettes) were collected from Instagram and used in the analyses (N=840). A CNN was used to extract unique features from images identified to contain waterpipes. An SVM classifier was built to distinguish between images with and without waterpipes. Methods for image classification were then compared to show how a CNN+SVM classifier could improve accuracy. RESULTS As the number of validated training images increased, the total number of extracted features increased. In addition, as the number of features learned by the SVM classifier increased, the average level of accuracy increased. Overall, 99.5% (418/420) of images classified were correctly identified as either hookah or nonhookah images. This level of accuracy was an improvement over earlier methods that used SVM, CNN, or bag-of-features alone. CONCLUSIONS A CNN extracts more features of images, allowing an SVM classifier to be better informed, resulting in higher accuracy compared with methods that extract fewer features. Future research can use this method to grow the scope of image-based studies. The methods presented here might help detect increases in the popularity of certain tobacco products over time on social media. By taking images of waterpipes from Instagram, we place our methods in a context that can be utilized to inform health researchers analyzing social media to understand user experience with emerging tobacco products and inform public health surveillance targets and policies.


Author(s):  
Hafizatul Hanin Hamzah ◽  
Nurbaity Sabri ◽  
Zaidah Ibrahim ◽  
Dino Isa

This paper investigates bambara groundnut leaf disease recognition using two popular techniques known as Convolutional Neural Network (CNN) and Bag of Features (BOF) with Speeded-up Robust Feature (SURF) and Support Vector Machine (SVM) classifier.  Leaf disease recognition has attracted many researchers because the outcome is useful for farmers. One of the crops that provide high income for farmers is bambara groundnut but the leaves are easily infected with diseases especially after the rain.  This could affect the crop productivity.  Thus, automatic disease recognition is crucial.  A new dataset that consists of 400 images of the infected and non-infected leaves of bambara groundnut has been constructed. The experimental results indicate that both of these techniques produce excellent leaf disease recognition accuracy.


2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 636
Author(s):  
Alhassan Mabrouk ◽  
Rebeca P. Díaz Redondo ◽  
Mohammed Kayed

Recently, it has been found that e-commerce (EC) websites provide a large amount of useful information that exceed the human cognitive processing capacity. In order to help customers in comparing alternatives when buying a product, previous research authors have designed opinion summarization systems based on customer reviews. They ignored the template information provided by manufacturers, although its descriptive information has the most useful product characteristics and texts are linguistically correct, unlike reviews. Therefore, this paper proposes a methodology coined as SEOpinion (summarization and exploration of opinions) to summarize aspects and spot opinion(s) regarding them using a combination of template information with customer reviews in two main phases. First, the hierarchical aspect extraction (HAE) phase creates a hierarchy of aspects from the template. Subsequently, the hierarchical aspect-based opinion summarization (HAOS) phase enriches this hierarchy with customers’ opinions to be shown to other potential buyers. To test the feasibility of using deep learning-based BERT techniques with our approach, we created a corpus by gathering information from the top five EC websites for laptops. The experimental results showed that recurrent neural network (RNN) achieved better results (77.4% and 82.6% in terms of F1-measure for the first and second phases, respectively) than the convolutional neural network (CNN) and the support vector machine (SVM) technique.


Sign in / Sign up

Export Citation Format

Share Document