DETERMINING ALTERNATIVES FOR METAL FORMING LUBRICANTS: A STUDY USING PLANE STRAIN COLD EXTRUSION PROCESS OF JIS-A1100 PURE ALUMINUM BILLET

2015 ◽  
Vol 74 (10) ◽  
Author(s):  
M. A. Nurul ◽  
S. Syahrullail ◽  
M. N. Musa

Lubrication is very important in metal forming processes to control wear and friction at the interface between interacting surfaces. Non-renewable resources, such as plain mineral oils are widely used due to its ability to act as a supplier to wearing contacts; it may function as a film material or even sustain chemical transformations to become a film material. Since non-renewable resources can only last for more than a decade, renewable resources have been studied in order to find alternative lubricants that can present similar results in terms of extrusion load and product quality. Two renewable lubricants were analyzed (RBD palm olein and jatropha) together with an additive free paraffinic mineral oil, VG32, which acted as a reference lubricant. The experiment used a cold work plane strain extrusion apparatus that consists of a pair of taper die and a symmetrical work piece (billet). The billet material was made of annealed pure aluminum JIS-A1100 with radius of 5 mm in the deformation area. It was found that higher viscosity lubricants produced low extrusion load and friction during metal forming process with no major severe wear on product quality. Based on the results, it was proven that renewable resource based lubricants can be considered as a substitute for common lubricants used in the industry, since they present similar results with those currently applied in the industry. 

2014 ◽  
Vol 71 (2) ◽  
Author(s):  
A. Nurul M. ◽  
Syahrullail S.

Lubrication in metal forming process is very important to control wear and friction at the interface between interacting surfaces. Non-renewable resources, such as mineral oil are widely used since a beginning due to its ability to act as a supplier to the wearing contact which functions as a film material or sustains chemical transformation to become a film material. Since it is will not last for a few more decades, renewable resources had been studied in order to find an alternative lubricant with presents similar results in terms of extrusion load and product quality. Two renewable lubricants were analyzed (Palm Kernel and Palm Stearin) together with additive free paraffinic mineral oil VG460 will act as a comparison lubricant. The experiment used a cold work plane strain extrusion apparatus consisting of a pair of taper die and a symmetrical work piece (billet). The billet material was annealed pure aluminum A1100 with radius of 5mm at the deformation area. It was found that palm Palm Kernel and Palm Stearin performed slightly high extrusion load, however they show no severe wear on product surface. Based on the results, it is proven that renewable based lubricants can be considered as a substitute to common mineral based lubricants used in the industry.


2014 ◽  
Vol 554 ◽  
pp. 327-331 ◽  
Author(s):  
Samion Syahrullail ◽  
Mohd Ahyan Nurul Aini

In this paper, the effect of frictional constraint from the application of three different viscosity of additive free paraffinic mineral oil as lubricant were investigated by cold work forward plane strain extrusion experiments. The experiment used a cold work plane strain extrusion apparatus consist of a pair of taper die and a symmetrical workpiece (billet). The billet material was annealed pure aluminum A1100 with radius 5 mm in deformation area. The experimental result shows that the higher viscosity, will lead to lower friction effect to the deformed area, as well as product area.


2015 ◽  
Vol 651-653 ◽  
pp. 473-479 ◽  
Author(s):  
Marco Teller ◽  
Markus Bambach ◽  
Gerhard Hirt ◽  
Ingo Ross ◽  
André Temmler ◽  
...  

In cold extrusion of aluminum alloys adhesive wear can be prevented by an excessive lubrication of the process. While this causes additional process steps also environmental risks have to be addressed. Hence, dry metal forming, i.e. avoiding lubrication by means of coatings and topography modifications is highly desirable. In this paper first results concerning the behavior of tailored surfaces under dry metal forming conditions for pure aluminum are presented. Different surface treatments (laser polishing and Mo2BC coating) of the tool steel AISI H11 are tested in a compression-torsion-tribometer under conditions adapted from cold extrusion. Normal stresses six times higher than the initial yield stress of the tested workpiece material pure aluminum (AA1050-O) are applied. Furthermore, a strategy for the characterization of aluminum adhesions to the tool is introduced. The influences of different topographies and the presence of a coating on the loss of material due to adhesive wear are investigated.


2016 ◽  
Vol 819 ◽  
pp. 469-473
Author(s):  
M.A. Nurul ◽  
Samion Syahrullail

In this paper, the effect of metal-to-metal contact from the application of plant-based lubricants, RBD palm olein and jatropa were investigated by cold work forward plane strain extrusion experiments. A pair of taper die and a symmetrical workpiece (billet) was placed inside extrusion rig which acted as main experimental apparatus. The billet material was annealed pure aluminum A1100 with radius 5 mm in deformation area. The experimental result shows that the lower viscosity index, will lead to lower friction effect to the deformed area, as well as product area.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
A. Norhayati ◽  
S. Maizan ◽  
H.M. Zin ◽  
J. Y. Wira ◽  
W. B. Wan Nik ◽  
...  

The present research concerns on the study of the effects of micro–pits arrays formed on taper die using cold forward plane strain extrusion experiments. Each pit was of reverse pyramids configuration having 330 microns diagonal length. The pits were 860 microns apart each others. Two additive free paraffinic mineral oils with low viscosity (P2) and high viscosity (P3) were used in this experimental work. The experimental results were compared with the results obtained from the plane strain extrusion experimental works with taper die without micro–pits (NA). The experimental results focused on the extrusion load, billet surface roughness and billet grid pattern on inclination slope. From the results, the existence of the micro–pits array on the taper die surface affected the extrusion load. At the same time, the micro–pits array affected the extruded billet surface roughness after the experiments. From this experiment, we could conclude that the micro–pits formed on the taper die (PA) would control the frictional constraint on the taper die compared to those without the micro–pits (NA). However, high viscosity lubricant (P3) was found to cause more effects compared to low viscosity lubricant (P2).


Alloy Digest ◽  
1985 ◽  
Vol 34 (4) ◽  

Abstract UNS No. T30407 is a high-carbon chromium cold-work tool steel containing vanadium (4.0%) and molybdenum (1.0%). Its carbon and vanadium form a vanadium carbide that provides war resistance many times greater than that of UNS No. T30403 (AISI Type D3). UNS No. T30407 was developed for applications where extreme abrasive wear is needed. Its many applications include briquetting dies and punches, brick mold liners, pottery, tools, broaches, meat-chopper plates and cold-extrusion dies. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-439. Producer or source: Tool steel mills.


2012 ◽  
pp. 179-188 ◽  
Author(s):  
M.P. Nagarkar ◽  
R.N. Zaware ◽  
S.G. Ghalme

Modeling and simulation of metal forming processes are increasingly in demand from the industry as the resulting models are found to be valuable tools considering the optimization of the existing and development of new processes. By the application of modeling and simulation techniques, it is possible to reduce the number of time-consuming experiments such as prototyping. Seamless tubes of various sizes and shapes are manufactured by various processes like sinking, fixed plug, floating plug, moving mandrel, cold working and hot working. The present work deals with the simulation of round tubes while passing through the sink pass, using ANSYS software. The simulation results are the displacement and von Mises stresses. The procedure can be used to improve the product quality and to study the effect of various parameters like die angle on the product quality.


Sign in / Sign up

Export Citation Format

Share Document