SUSPENSION OPTIMIZATION USING DESIGN OF EXPERIMENT (DOE) METHOD ON MSC/ADAMS-INSIGHT

2015 ◽  
Vol 75 (8) ◽  
Author(s):  
N. Ikhsan ◽  
R. Ramli ◽  
A. Alias

In this paper, the optimum setting for suspension hard points was determined from a half vehicle suspension system. These optimized values were obtained by considering the Kinematic and Compliance (K&C) effects of a verified PROTON WRM 44 P0-34 suspension model developed using MSC/ADAMS/CAR. For optimization process, multi body dynamic software, MSC/ADAMS/INSIGHT and Design of Experiment (DoE) method was employed. There were total of 60 hard points (factors) in x, y and z axis-direction for both front and rear suspension while toe, camber and caster change were selected as the objective function (responses) to be minimized. The values of 5 mm, 10 mm and 15 mm were used as relative values of factor setting to determine the factor range during optimization process. The hard point axis-direction that has the most effects on the responses was identified using the Pareto chart to optimize while the rests were eliminated. As expected result, a new set of suspension system model with a selected of Kinematic and Compliance (K&C) data set were obtained, and compared with the verified simulation data when subjected to the vertical parallel movement simulation test to determine the best setting and optimum suspension hard points configuration.  

2011 ◽  
Vol 55-57 ◽  
pp. 1156-1161
Author(s):  
Jing Yue Wang ◽  
Hao Tian Wang ◽  
Li Min Zheng

Vehicle suspension system with hysteretic nonlinearity has obvious nonlinear characteristics, which directly cause the system to the possibility of existence of bifurcation and chaos. Two degrees of freedom for the 1/4 body suspension model is established and the behavior of the system under road multi-frequency excitations is analyzed. In the paper, it reveals the existence of chaos in the system with the Poincaré map, phase diagram, time history graph, and its chaotic behavior is controlled by nonlinear feedback. Numerical simulation shows the effectiveness and feasibility of the control method with improved ride comfort. The results may supply theoretical bases for the analysis and optimal design of the vehicle suspension system.


2021 ◽  
Vol 2074 (1) ◽  
pp. 012023
Author(s):  
Jianjun Liu

Abstract A complete suspension model is established, and the suspension system is simulated and optimized. The method of suspension system establishment and simulation is explained in detail, and the influence of suspension parameter changes on vehicle handling and stability is analyzed in detail. The dynamic simulation analysis of wheel parallel runout test was carried out on the system, and the suspension system was optimized by artificial intelligence algorithm. The research results provide a technical basis for the design of automobile suspension.


Author(s):  
Marie-Maud Chatillon ◽  
Louis Je´ze´quel

This paper presents a robust design strategy for the design of complex mechanical systems. The design strategy is based on the hierarchical optimization of design variables. Simplified physics-based models are used in each step of the design and optimization process. The steps of the design process correspond to the different stages of the design process, from functional requirements and decomposition, to design of the parts. Besides optimization, robustness of the solution to variations in design variables and environmental conditions is essential. The methodology presented in this paper is applied to the optimization of the design parameters of a vehicle suspension system. The consideration of parameters uncertainties from early design stages, the organization of the optimization process, and the use of simplified models, allow to obtain performant and robust design, and to manage design trade-offs.


Author(s):  
R. Sakthivel ◽  
A. Arunkumar ◽  
K. Mathiyalagan ◽  
S. Selvi

Synthesis of control design is an essential part for vehicle suspension systems. This paper addresses the issue of robust reliable H∞ control for active vehicle suspension system with input delays and linear fractional uncertainties. By constructing an appropriate Lyapunov–Krasovskii functional, a set of sufficient conditions in terms of linear matrix inequalities (LMIs) are derived for ensuring the robust asymptotic stability of the active vehicle suspension system with a H∞ disturbance attenuation level γ. In particular, the uncertainty appears in the sprung mass, unsprung mass, damping and stiffness parameters are assumed in linear fractional transformation (LFT) formulations. More precisely, the designed controller is presented in terms of the solution of LMIs which can be easily checked by Matlab-LMI toolbox. Finally, a quarter-car suspension model is considered as an example to illustrate the effectiveness and applicability of the proposed control strategy.


Author(s):  
P. Sathishkumar ◽  
S. Rajeshkumar ◽  
T.S. Rajalakshmi ◽  
J. Thiyagarajan ◽  
J. Arivarasan

The main objective of the variable damper controlled vehicle suspension system is to reduce the discomfort identified by passengers which arises from road roughness and to increase the ride handling related with the rolling, pitching and heave movements. This imposes a very fast and accurate variable damper to meet as much control objectives, as possible. The method of the proposed damper is to reduce the vibrations on each corner of vehicle by providing control forces to suspension system while travelling on uneven road. Numerical simulations on a full vehicle suspension model are performed in the Matlab Simulink toolboxes to evaluate the effectiveness of the proposed approach. The obtained results show that the proposed system provides better results than the conventional suspension system.


2021 ◽  
Vol 11 (5) ◽  
pp. 2221
Author(s):  
Bonan Qin ◽  
Riya Zeng ◽  
Xiaoman Li ◽  
Jue Yang

Road-rail vehicles built on traditional vehicle chassis can only switch operation modes at particular areas such as level crossings, thus limiting the working scope and efficiency of routine railway inspection and maintenance. This paper proposes a novel tracked chassis for the road-rail vehicle with a multi-cylinder hydropneumatic suspension system, which can better adapt to rough terrains and enhance the vehicle ride performance. Based on this hydropneumatic suspension design, the single-cylinder mathematical model is derived and validated by experimental data. An in-plane multi-body dynamics (MBD) model and road model are established, combined with the hydropneumatic suspension model, including the LuGre friction force. Virtual tests are conducted to investigate the effects of different initial gas volumes, varied diameters and damping pipe lengths on the ride performance. The results indicate that improper damping pipe diameter and charge gas volume will deteriorate the ride performance, which provides a useful reference for the optimization design and control of the hydropneumatic system.


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

Sign in / Sign up

Export Citation Format

Share Document