IMPROVING INDOOR AIR QUALITY USING LOCAL EXHAUST VENTILATION (LEV)

2015 ◽  
Vol 76 (6) ◽  
Author(s):  
Norasikin Binti Hussin ◽  
Dzullijah Binti Ibrahim ◽  
Farrah Noor Binti Ahmad ◽  
Nur Hayati Binti Mohd Yahya ◽  
Siti Mardini Binti Hashim

Ventilation is used to control indoor air quality for maintaining the health and performance of human and ensuring healthy environment. It is known that the environmental criteria are dictated by temperature, humidity, and contamination. In a case study at XY company, questionnaires were distributed to the workers and interviews were conducted to find out the level of satisfaction on working conditions in certain areas. 70% respondents reported feeling uncomfortable because of heat, dust and hot environment. An analysis of indoor air quality was carried out to measure the temperature at pouring area. Based on the analysis, the range of temperatures is from 35°C to 43°C. A local exhaust ventilation (LEV) system was design for improve indoor air quality and reduce extreme heat. The LEV system was proposed for the pouring area to capture then discharged heat or contaminants through a series of strategically placed overhead ducts.

2018 ◽  
Vol 7 (4.13) ◽  
pp. 188-194
Author(s):  
Aiman S H Al-Ammari ◽  
Yazan S M Altarazi ◽  
Abd. Rahim Abu Talib ◽  
M Nadiir Bheekhun

Excellent indoor air quality in an enclosed area has always become a major safety aspect in designing a building. Issues with regards to circulation of air and exhaust system must be first resolved before the said building can be used for any purposes. The goal of this study is to identify ways to improve air quality in the aviation fire test room at the Propulsion Laboratory that is located in Universiti Putra Malaysia (UPM), Selangor, Malaysia. A computational fluid dynamics (CFD) method was employed to predict the air contaminant inside the lab. When performing the activities, the indoor air quality have to be ensure circulated and ventilated in the lab. Using a mechanical fans and natural ventilation are a traditional method to provide indoor air quality into the propulsion. Whereby, this method may not be enough to provide the required indoor air quality for specific aviation fire-test setup. Such labs may suffer from increasing air contaminant based on the improper and irregular air distribution. A grid independent test (GIT) was done to reduce the effects of meshing on the results was carried out to estimate the discretization error. Computational fluid dynamic (CFD) method was carried out to identify a suitable ventilation system that would result in the greatest improvement in the indoor air quality (IAQ) inside the lab. The results of using the CFD simulation show that installing Local Exhaust Ventilation (LEV) at the lab could significantly improve the IAQ inside the lab. The airflow increase by 84% and the CO, CO2 and NO reduce by 84%, 89 and 81%, respectively. Improvement of the IAQ by increasing the airflow and reducing in the air CO, CO2, and NO, which can be considered as very significant achievement.    


2019 ◽  
Vol 11 (17) ◽  
pp. 4791
Author(s):  
Kwag ◽  
Park ◽  
Kim ◽  
Kim

Building air-tightness has been increased to make energy efficient buildings. However, various indoor air quality issues can be caused by high building air-tightness because it allows low air and moisture transmission through building envelop. In order to solve and prevent these issues, mechanical ventilation systems can be used to control the indoor humidity level. The purpose of this paper is to evaluate the performances of the Relative Humidity (RH)-sensor based auto-controlled centralized exhaust ventilation systems to manage indoor air quality and thermal comfort of multi-family residential buildings in South Korea. A series of field tests were performed for different target zones and for various moisture source scenarios. As a result, it was found that the auto-controlled centralized exhaust ventilation systems were able to control indoor air quality and to maintain the zones thermal comfort faster than the baseline cases that did not operate exhaust vents. The results presented in this paper can show the potential and the feasibility of the auto-controlled centralized exhaust ventilation systems for multi-family residential buildings in South Korea. It is expected that the results presented in this paper would be useful for building owners, engineers, and architects when designing building systems.


Indoor Air ◽  
2016 ◽  
Vol 27 (2) ◽  
pp. 487-499 ◽  
Author(s):  
G. Mallach ◽  
M. St-Jean ◽  
M. MacNeill ◽  
D. Aubin ◽  
L. Wallace ◽  
...  

2013 ◽  
Vol 463-464 ◽  
pp. 639-646 ◽  
Author(s):  
Ricardo H.M. Godoi ◽  
Ana F.L. Godoi ◽  
Sérgio J. Gonçalves Junior ◽  
Sarah L. Paralovo ◽  
Guilherme C. Borillo ◽  
...  

2018 ◽  
Vol 4 (11) ◽  
pp. 2596 ◽  
Author(s):  
Syahrun Neizam Mohd Dzullkiflli ◽  
Abd Halid Abdullah ◽  
Lee Yee Yong ◽  
Abdul Mutalib Leman ◽  
Samiullah Sohu

Problem related with indoor air quality (IAQ), is rapidly becoming a major health issue as people spend almost 90% of their time indoors. Museums were established in Malaysia more than hundred years ago. Since the year 2005, Malaysia has been moving away from constructing new buildings in favour of refurbishing historic and old ones. A healthy environment at the museum building has been identified as one of the important element that must been considered, but it is not sure either IAQ in the museum building provide a good air quality or not. The purpose of this study is to determine the actual indoor environment of the museum building in Melaka. In this study, the IAQ measurement were conduct for six days at the Melaka Sultanate Palace Museum and at the History and Ethnography Museum. During the measurement, IAQ parameters of gaseous pollutant of nitrogen dioxide, sulfur dioxide and carbon dioxide, and particulate matter of fine particles were recorded by using specific IAQ equipment. The finding of this study indicates that the distance of buildings from roadways appears to have an impact on indoor environmental levels, especially for nitrogen dioxide, sulfur dioxide and particulate matter. Based on the results, only gaseous pollutant of sulfur dioxide had not exceeding the acceptable TLV compared to the other IAQ pollutants.


Author(s):  
Paola Fermo ◽  
Valeria Comite ◽  
Luigi Falciola ◽  
Vittoria Guglielmi ◽  
Alessandro Miani

Indoor air quality (IAQ) in household environments is mandatory since people spend most of their time in indoor environments. In order to guarantee a healthy environment, air purification devices are often employed. In the present work, a commercial household vacuum cleaner has been tested in order to verify its efficiency in reducing the mass concentration and particle number of aerosol particulate matter (PM). The efficiency has been tested measuring, while the instrument was working, PM10 (particles with aerodynamic diameter less than 10 μm), PM2.5 (particles with aerodynamic diameter less than 2.5 μm), PM1 (particles with aerodynamic diameter less than 1 μm), and 7 size-fractions in the range between 0.3 and >10 μm. Measurements have been carried out by means of a portable optical particle counter instrument and simulating the working conditions typical of a household environment. It has been found that the tested commercial device significantly reduces both PM concentrations and particle number, especially in the finest fraction, i.e., particles in the range 0.3–0.5 μm, allowing an improvement of indoor air quality.


Sign in / Sign up

Export Citation Format

Share Document