ENHANCEMENT OF GREEN ALGAE HYDROGEN PRODUCTION BY LASER IRRADIATION

2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Mohamad Aizat Abu Bakar ◽  
Noriah Bidin

Biohydrogen is an alternative to support the increasing hydrogen demand in the future. Biohydrogen is hydrogen gas produced by green algae and bacteria in certain quantity. The aim of this research is to enhance hydrogen gas production by green algae (Closterium sp.) using laser light. The laser used in this experiment was a diode laser operating in continuous mode with wavelength of 655 nm. Green algae are placed in a sulphur deprived medium so it will produce hydrogen gas. This algae is irradiated with diode laser for 30 minutes then stop before continue for the next 30 minutes. This process is repeated until the total irradiation is 120 minutes. Both strains of green algae are set up into measuring system under exposure of sunlight in a constant room temperature. The volume and rate of hydrogen gas produced is examined by measuring the dye position in capillary tube of 0.5 mm radius. The results showed that there is a 9.0% increase of hydrogen gas production in radiated strain of green algae compared to the wild strain. The rate of hydrogen gas production of radiated algae is faster than the wild strain. This showed that, red light laser has absorbed cell green algae and mutated its behaviour for producing more hydrogen gas. This result is in good agreement with other researcher.  

2015 ◽  
Vol 9 (2) ◽  
pp. 21-30
Author(s):  
Sara N. Ghanem Ghanem ◽  
Sajida A. Abood Abood

The effect of the exposure of sunflower (Helianthus annuus L.) seeds to red light laser radiationwith 650 nm 50 mw/cm2by diode laser in germination and growth of seedlings and calli had beenstudied. Seeds were irradiated with red light for different periods of time 5, 10, 15 and 20minutes. The percentage of seeds germination and the average of roots length were differentaccording to exposure time used. Increasing the time of exposure led to the best results in seedgermination percentage (100%), rooting and shooting behavior and flowering accelerationcompared with control. Initiation of calli from explants (roots, stems and leaves) of sunflowerseedlings on Murashige and Skoog media containing 1.0 mg/l of Benzyl adenine and 0.5 mg/l ofNaphthalene acetic acid were succeeded very well from the irradiated seeds. The best irradiationtime was 20 minutes for growth and durability of leaf calli. The fresh weight, protein, DNA, RNAcontents and the specific activity of dihydrofolate reductase of calli of different explants wereincreased with increasing the duration of seeds exposure to red light at 30 and 60 days of growthon media. Results also illustrate increases in protein and oil contents in the irradiated seeds overcontrol seeds, specially at 20 minutes. Using red laser rays for 5 and 20 minutes, resulted in rootsand shoots production from calli of stem and leaf respectively


2009 ◽  
Vol 75 (18) ◽  
pp. 5884-5892 ◽  
Author(s):  
Gwen Falony ◽  
An Verschaeren ◽  
Feije De Bruycker ◽  
Vicky De Preter ◽  
Kristin Verbeke ◽  
...  

ABSTRACT Kinetic analyses of bacterial growth, carbohydrate consumption, and metabolite production of five butyrate-producing clostridial cluster XIVa colon bacteria grown on acetate plus fructose, oligofructose, inulin, or lactate were performed. A gas chromatography method was set up to assess H2 and CO2 production online and to ensure complete coverage of all metabolites produced. Method accuracy was confirmed through the calculation of electron and carbon recoveries. Fermentations with Anaerostipes caccae DSM 14662T, Roseburia faecis DSM 16840T, Roseburia hominis DSM 16839T, and Roseburia intestinalis DSM 14610T revealed similar patterns of metabolite production with butyrate, CO2, and H2 as the main metabolites. R. faecis DSM 16840T and R. intestinalis DSM 14610T were able to degrade oligofructose, displaying a nonpreferential breakdown mechanism. Lactate consumption was only observed with A. caccae DSM 14662T. Roseburia inulinivorans DSM 16841T was the only strain included in the present study that was able to grow on fructose, oligofructose, and inulin. The metabolites produced were lactate, butyrate, and CO2, without H2 production, indicating an energy metabolism distinct from that of other Roseburia species. Oligofructose degradation was nonpreferential. In a coculture of R. inulinivorans DSM 16841T with the highly competitive strain Bifidobacterium longum subsp. longum LMG 11047 on inulin, hardly any production of butyrate and CO2 was detected, indicating a lack of competitiveness of the butyrate producer. Complete recovery of metabolites during fermentations of clostridial cluster XIVa butyrate-producing colon bacteria allowed stoichiometric balancing of the metabolic pathway for butyrate production, including H2 formation.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 116
Author(s):  
Julian Deuerling ◽  
Shaun Keck ◽  
Inasya Moelyadi ◽  
Jens-Uwe Repke ◽  
Matthias Rädle

This work presents a novel method for the non-invasive, in-line monitoring of mixing processes in microchannels using the Raman photometric technique. The measuring set-up distinguishes itself from other works in this field by utilizing recent state-of-the-art customized photon multiplier (CPM) detectors, bypassing the use of a spectrometer. This addresses the limiting factor of integration times by achieving measuring rates of 10 ms. The method was validated using the ternary system of toluene–water–acetone. The optical measuring system consists of two functional units: the coaxial Raman probe optimized for excitation at a laser wavelength of 532 nm and the photometric detector centered around the CPMs. The spot size of the focused laser is a defining factor of the spatial resolution of the set-up. The depth of focus is measured at approx. 85 µm with a spot size of approx. 45 µm, while still maintaining a relatively high numerical aperture of 0.42, the latter of which is also critical for coaxial detection of inelastically scattered photons. The working distance in this set-up is 20 mm. The microchannel is a T-junction mixer with a square cross section of 500 by 500 µm, a hydraulic diameter of 500 µm and 70 mm channel length. The extraction of acetone from toluene into water is tracked at an initial concentration of 25% as a function of flow rate and accordingly residence time. The investigated flow rates ranged from 0.1 mL/min to 0.006 mL/min. The residence times from the T-junction to the measuring point varies from 1.5 to 25 s. At 0.006 mL/min a constant acetone concentration of approx. 12.6% was measured, indicating that the mixing process reached the equilibrium of the system at approx. 12.5%. For prototype benchmarking, comparative measurements were carried out with a commercially available Raman spectrometer (RXN1, Kaiser Optical Systems, Ann Arbor, MI, USA). Count rates of the spectrophotometer surpassed those of the spectrometer by at least one order of magnitude at identical target concentrations and optical power output. The experimental data demonstrate the suitability and potential of the new measuring system to detect locally and time-resolved concentration profiles in moving fluids while avoiding external influence.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1784
Author(s):  
Matthias Schilde ◽  
Dirk von Soosten ◽  
Liane Hüther ◽  
Susanne Kersten ◽  
Ulrich Meyer ◽  
...  

Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose–response relationships between four doses of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) and potential synergistic effects with low (LC) or high (HC) concentrate feed proportions (CFP) on CH4 reduction as both mitigation approaches differ in their mode of action (direct 3-NOP vs. indirect CFP effects). Diet substrates and 3-NOP were incubated in a rumen simulation technique to measure the concentration and production of volatile fatty acids (VFA), fermentation gases as well as substrate disappearance. Negative side effects on fermentation regarding total VFA and gas production as well as nutrient degradability were observed for neither CFP nor 3-NOP. CH4 production decreased from 10% up to 97% in a dose-dependent manner with increasing 3-NOP inclusion rate (dose: p < 0.001) but irrespective of CFP (CFP × dose: p = 0.094). Hydrogen gas accumulated correspondingly with increased 3-NOP dose (dose: p < 0.001). In vitro pH (p = 0.019) and redox potential (p = 0.066) varied by CFP, whereas the latter fluctuated with 3-NOP dose (p = 0.01). Acetate and iso-butyrate (mol %) decreased with 3-NOP dose, whereas iso-valerate increased (dose: p < 0.001). Propionate and valerate varied inconsistently due to 3-NOP supplementation. The feed additive 3-NOP was proven to be a dose-dependent yet effective CH4 inhibitor under conditions in vitro. The observed lack of additivity of increased CFP on the CH4 inhibition potential of 3-NOP needs to be verified in future research testing further diet types both in vitro and in vivo.


2020 ◽  
Vol 9 (1) ◽  
pp. 71
Author(s):  
Julia Marente ◽  
Javier Avalos ◽  
M. Carmen Limón

Carotenoid biosynthesis is a frequent trait in fungi. In the ascomycete Fusarium fujikuroi, the synthesis of the carboxylic xanthophyll neurosporaxanthin (NX) is stimulated by light. However, the mutants of the carS gene, encoding a protein of the RING finger family, accumulate large NX amounts regardless of illumination, indicating the role of CarS as a negative regulator. To confirm CarS function, we used the Tet-on system to control carS expression in this fungus. The system was first set up with a reporter mluc gene, which showed a positive correlation between the inducer doxycycline and luminescence. Once the system was improved, the carS gene was expressed using Tet-on in the wild strain and in a carS mutant. In both cases, increased carS transcription provoked a downregulation of the structural genes of the pathway and albino phenotypes even under light. Similarly, when the carS gene was constitutively overexpressed under the control of a gpdA promoter, total downregulation of the NX pathway was observed. The results confirmed the role of CarS as a repressor of carotenogenesis in F. fujikuroi and revealed that its expression must be regulated in the wild strain to allow appropriate NX biosynthesis in response to illumination.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Nur Aimi Jani ◽  
Choonyian Haw ◽  
Weesiong Chiu ◽  
Saadah Abdul Rahman ◽  
Poisim Khiew ◽  
...  

Current work reports the study of Ag nanocrystals (NCs) decorated doubly anodized (DA) TiO2 nanotubes (NTs) thin film as an efficient photoelectrode material for water splitting and photocatalytic hydrogen gas production. DA process has been shown to be capable of producing less defective NTs and creating additional spacious gaps in between NT bundles to allow efficient and uniform integration of Ag NCs. By employing photoreduction method, Ag NCs can be deposited directly onto NTs, where the size and density of coverage can be maneuvered by merely varying the concentration of Ag precursors. Field emission scanning electron microscope (FESEM) images show that the Ag NCs with controllable size are homogeneously decorated onto the walls of NTs with random yet uniform distribution. X-ray diffraction (XRD) results confirm the formation of anatase TiO2 NTs and Ag NCs, which can be well indexed to standard patterns. The decoration of metallic Ag NCs onto the surface of NTs demonstrates a significant enhancement in the photoconversion efficiency as compared to that of pristine TiO2 NTs. Additionally, the as-prepared nanocomposite film also shows improved efficiency when used as a photocatalyst platform in the production of hydrogen gas. Such improvement in the performance of water splitting and photocatalytic hydrogen gas production activity can be credited to the surface plasmonic resonance of Ag NCs present on the surface of the NTs, which renders improved light absorption and better charge separation. The current work can serve as a model of study for designing more advanced nanoarchitecture photoelectrode for renewable energy application.


Sign in / Sign up

Export Citation Format

Share Document