scholarly journals Mechanical and degradation properties of polycaprolactone/ zeolite electrospun membrane

2019 ◽  
Vol 15 (3) ◽  
pp. 356-360
Author(s):  
Muhammad Syhamiel Iqhwan Rusli ◽  
Mohd Izzat Hassan ◽  
Naznin Sultana ◽  
Ahmad Fauzi Ismail

Polycaprolactone (PCL) is one of the synthetic polymers used in biomedical applications.  PCL has several advantages including biocompatibility, biodegradability and mechanical flexibility. On the other hand, zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents.  Electrospinning is a promising technique to produce membranes by applying high voltage electricity. In this research, an electrospinning technique was used to fabricate the electrospun membrane based on PCL and zeolite.  In order to produce electrospun membrane, 15% (w/v) of PCL polymer solution was dissolved in acetone and 20% (w/v) zeolite was incorporated into the PCL polymer solution.  The diameter range of fiber was 2-6 µm. Zeolite nanoparticles were distributed homogenously into the fibers.  EDX spectrum confirmed the presence of zeolite throughout the membrane. Mechanical testing revealed that the bi-layered membrane had better mechanical properties than only PCL and PCL/Zeolite membrane. In-vitro degradation experiment was carried out for 21 days and the membranes were characterized after the experiment. The membrane can be potentially used as microfiltration unit to entrap silver contaminants in drinking water.  Apart of that, the membranes are prepared with biodegradable, biocompatible, non-toxic materials which are eco-friendly.

Author(s):  
N. Sultana ◽  
M. S. I. Rusli ◽  
M. I. Hassan

The presence of heavy metals in drinking water leads to several health problems. Nano and micro fiber membranes can be used to overcome this through nano or microfiltration process. In this study, polycaprolactone (PCL)/zeolite electrospun composite membranes were fabricated and characterized. PCL is one of the synthetic polymers used in biomedical applications. It has several advantages, including biocompatibility, biodegradability and mechanical flexibility. On the other hand, zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Electrospinning is a promising technique to produce membranes by applying high voltage electricity. In this research, an electrospinning technique was used to fabricate the electrospun membrane based on PCL and zeolite. In order to produce electrospun membrane, 15% (w/v) of PCL polymer solution was dissolved in acetone and 20% (w/v) zeolite nanoparticles were incorporated into the PCL polymer solution. The diameter range of fiber was 2-6 µm. Zeolite nanoparticles were distributed homogenously into the fibers. EDX spectrum confirmed the presence of zeolite throughout the membrane. From the performance testing, it was revealed that the membrane can be potentially used as microfiltration to entrap silver contaminants in drinking water. Apart of that, the membranes are prepared with biocompatible, non-toxic materials which can be eco-friendly.


2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Muhammad Syhamiel Iqhwan Che Rusli ◽  
Mohd Izzat Hassan ◽  
Naznin Sultana ◽  
Ahmad Fauzi Ismail

The presence of heavy metals in drinking water leads to several health problems. In this study, polycaprolactone (PCL)/zeolite nano or microfiber electrospun composite membranes, diameter range of the fibers was 2 µm- 6 µm, were fabricated by using electrospinning technique. The membranes separation processes have played very crucial roles in water purification industry. Apart from that, the membranes are prepared with biocompatible, non-toxic materials which will be eco-friendly. In order to produce electrospun membrane, 15% (w/v) of PCL polymer solution was dissolved in acetone and 20% (w/w) zeolite was incorporated into the PCL polymer solution. Electricity charged jet of polymer solution from the syringe formed an electrostatics field when the high voltage of 20kV was applied. Scanning electron micrograph (SEM) and energy dispersive spectroscopy (EDX) implemented to indicate the characterization of membranes. The water contact angle of PCL/zeolite membrane was 119.53±5.24 which was almost same as pure PCL membrane (107.73±8.54). The inducible results obtained in this study suggested that electrospun pcl and polycaprolactone/zeolite layer by layer nanofibrous membranes can be a favored verdict for the removal of heavy metal ions.


2020 ◽  
Vol 20 (12) ◽  
pp. 7376-7384
Author(s):  
Chen Yuan ◽  
Xin Ren ◽  
Huilin Ye ◽  
Shue Jin ◽  
Yi Zuo ◽  
...  

Mechanical and degradation properties are crucial factors of guided tissue/bone regeneration (GTR/GBR) membranes. In this work, a series of fibrous membranes with different ratios of polycaprolactone (PCL) and gelatin (Gel) were prepared (PCL:Gel = 1:9 (P1G9), 3:7 (P3G7), 5:5 (P5G5), 7:3 (P7G3), and 9:1 (P9G1)) by electrospinning, and their physicochemical properties and In Vitro degradation behaviors were systematically investigated. Mechanical tests showed that tensile strength was enhanced with the presence of Gel, and the tensile strength of the P9G1 membrane reached nearly three times that of the pure PCL membrane. The degradation rate of the composite membranes could be adjusted by controlling the ratio of PCL and Gel; the higher the Gel content was, the faster the degradation of the PCL/Gel membrane. The higher PCL content favored maintaining the fibrous structure of the electrospun membranes. These findings will be beneficial for designing PCL/Gel composite materials for biomedical applications.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1927 ◽  
Author(s):  
Cai Wang ◽  
Jiapeng Xie ◽  
Xuan Xiao ◽  
Shaojun Chen ◽  
Yiping Wang

A nontoxic and biodegradable polyurethane was prepared, characterized, and evaluated for biomedical applications. Stretchable, biodegradable, and biocompatible polyurethanes (LPH) based on L-lysine diisocyanate (LDI) with poly(ethylene glycol) (PEG) and polyhydroxyalkanoates(PHA) of different molar ratios were synthesized. The chemical and physical characteristics of the LPH films are tunable, enabling the design of mechanically performance, hydrophilic, and biodegradable behavior. The LPH films have a Young’s modulus, tensile strength, and elongation at break in the range of 3.07–25.61 MPa, 1.01–9.49 MPa, and 102–998%, respectively. The LPH films demonstrate different responses to a change of temperature from 4 to 37 °C, with the swelling ratio for the same sample at equilibrium varying from 184% to 151%. In vitro degradation tests show the same LPH film has completely different degradation morphologies in pH of 3, 7.4, and 11 phosphate buffered solution (PBS). In vitro cell tests show feasibility that some of the LPH films are suitable for culturing rat bone marrow stem cells (rBMSCs), for future soft-tissue regeneration. The results demonstrate the feasibility of the LPH scaffolds for many biomedical applications.


1985 ◽  
Vol 33 (3) ◽  
pp. 1195-1201 ◽  
Author(s):  
KIMIKO MAKINO ◽  
MASAYUKI ARAKAWA ◽  
TAMOTSU KONDO

2009 ◽  
Vol 31 (5) ◽  
pp. 589-594 ◽  
Author(s):  
Yunqing Kang ◽  
Yadong Yao ◽  
Guangfu Yin ◽  
Zhongbing Huang ◽  
Xiaoming Liao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document