In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications

2015 ◽  
Vol 47 ◽  
pp. 85-96 ◽  
Author(s):  
Yaokun Pan ◽  
Siyu He ◽  
Diangang Wang ◽  
Danlan Huang ◽  
Tingting Zheng ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1927 ◽  
Author(s):  
Cai Wang ◽  
Jiapeng Xie ◽  
Xuan Xiao ◽  
Shaojun Chen ◽  
Yiping Wang

A nontoxic and biodegradable polyurethane was prepared, characterized, and evaluated for biomedical applications. Stretchable, biodegradable, and biocompatible polyurethanes (LPH) based on L-lysine diisocyanate (LDI) with poly(ethylene glycol) (PEG) and polyhydroxyalkanoates(PHA) of different molar ratios were synthesized. The chemical and physical characteristics of the LPH films are tunable, enabling the design of mechanically performance, hydrophilic, and biodegradable behavior. The LPH films have a Young’s modulus, tensile strength, and elongation at break in the range of 3.07–25.61 MPa, 1.01–9.49 MPa, and 102–998%, respectively. The LPH films demonstrate different responses to a change of temperature from 4 to 37 °C, with the swelling ratio for the same sample at equilibrium varying from 184% to 151%. In vitro degradation tests show the same LPH film has completely different degradation morphologies in pH of 3, 7.4, and 11 phosphate buffered solution (PBS). In vitro cell tests show feasibility that some of the LPH films are suitable for culturing rat bone marrow stem cells (rBMSCs), for future soft-tissue regeneration. The results demonstrate the feasibility of the LPH scaffolds for many biomedical applications.


2020 ◽  
Vol 20 (12) ◽  
pp. 7376-7384
Author(s):  
Chen Yuan ◽  
Xin Ren ◽  
Huilin Ye ◽  
Shue Jin ◽  
Yi Zuo ◽  
...  

Mechanical and degradation properties are crucial factors of guided tissue/bone regeneration (GTR/GBR) membranes. In this work, a series of fibrous membranes with different ratios of polycaprolactone (PCL) and gelatin (Gel) were prepared (PCL:Gel = 1:9 (P1G9), 3:7 (P3G7), 5:5 (P5G5), 7:3 (P7G3), and 9:1 (P9G1)) by electrospinning, and their physicochemical properties and In Vitro degradation behaviors were systematically investigated. Mechanical tests showed that tensile strength was enhanced with the presence of Gel, and the tensile strength of the P9G1 membrane reached nearly three times that of the pure PCL membrane. The degradation rate of the composite membranes could be adjusted by controlling the ratio of PCL and Gel; the higher the Gel content was, the faster the degradation of the PCL/Gel membrane. The higher PCL content favored maintaining the fibrous structure of the electrospun membranes. These findings will be beneficial for designing PCL/Gel composite materials for biomedical applications.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 586
Author(s):  
Ana Laura Ramirez–Ledesma ◽  
Paola Roncagliolo–Barrera ◽  
Carlo Paternoster ◽  
Riccardo Casati ◽  
Hugo Lopez ◽  
...  

In recent years, increasing interest has been placed in the development of Zn alloys for absorbable biomedical applications. It has been demonstrated that these alloys are potential candidates for endovascular applications. In the present work, a novel Zn-12.5Ag-1Mg alloy was investigated as a potential biomedical absorbable material. As a reference, the exhibited biocompatible properties are compared with those of pure Zn and a Zn-1Mg alloy. All the alloys investigated in this work were cast in a water-cooled Cu-mold (chill casting). Subsequently, the alloys were solution-treated and then extruded. The microstructural evolution at each stage of the alloy processing was resolved by analytical means including optical, scanning, transmission microscopy, and X-ray diffraction. By these means, the various phases belonging to this alloy system were disclosed. In addition, determinations of both corrosion and mechanical properties were carried out in the proposed Zn-12.5Ag-1Mg alloy. In particular, an excellent combination of strength and ductility was found, which is attributed to grain refinement as well as the precipitation of a uniform distribution of refined phases (i.e., AgZn solid solution, ε-AgZn3, and Ag0.15MgZn1.85 intermetallics). All the precipitated intermetallics were embedded in a η-Zn matrix. As for the corrosion degradation in the physiological NaCl solution in the as-extruded condition, the experimental outcome indicates that the Zn-12.5Ag-1Mg alloy exhibits degradation rates far superior to currently reported ones for Zn-based alloys intended for absorbable biomedical applications.


2020 ◽  
Vol 982 ◽  
pp. 59-66
Author(s):  
Yu Long Ding ◽  
Hong Bo Zhang ◽  
Rui Xue Yin ◽  
Wen Jun Zhang

Hyaluronic acid (HA)-based hydrogels are widely used in biomedical applications due to their excellent biocompatibility and enzymatic degradability. In this paper a photo-crosslinking double-network hyaluronic acid-based hydrogel dressing was proposed. Hyaluronic acid can be UV-crosslinked by modification with methacrylic anhydride (HA-MA) and disulfide-crosslinked by modification with 3,3'-dithiobis (propionylhydrazide) (DTP) (HA-SH). The mixings of these two materials at different ratios were produced. All the samples can be quickly gelled at 365 nm for 10 s. The rheological tests show that the storage modulus (G') of the double network (HA-SH/HA-MA) hydrogel is increased with the increase of HA-SH content. The HA-SH/HA-MA hydrogel has porous structure, high swelling ratio and Controlled degradation rate. In vitro degradation tests show that the ratio of HA-SH/HA-MA ratio was 9:1 (S9M1) in 100 U/ml hyaluronidase (Hase) degraded by 89.91±2.26% at 11d. The cytocompatibility of HA-SH/HA-MA hydrogels was proved by Live/Dead stainings and CCK-8 assays in the human dermis fibroblasts (HDF) cells test. All these results highlight the biological potential of the HA-SH/HA-MA hydrogels for DFU intervention.


2017 ◽  
Vol 696 ◽  
pp. 768-781 ◽  
Author(s):  
Shahrouz Zamani Khalajabadi ◽  
Norhayati Ahmad ◽  
Sudin Izman ◽  
Aminudin Bin Haji Abu ◽  
Waseem Haider ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4256
Author(s):  
Sophie Wendels ◽  
Deyvid de Souza Porto ◽  
Luc Avérous

Organic–inorganic xerogel networks were synthesized from bacterial poly (3-hydroxybutyrate) (PHB) for potential biomedical applications. Since silane-based networks usually demonstrate increased biocompatibility and mechanical properties, siloxane groups have been added onto polyurethane (PU) architectures. In this work, a diol oligomer (oligoPHB-diol) was first prepared from bacterial poly(3-hydroxybutyrate) (PHB) with an environmentally friendly method. Then, hexamethylene diisocyanate or biobased dimeryl diisocyanate was used as diisocyanate to react with the short oligoPHB-diol for the synthesis of different NCO-terminated PU systems in a bulk process and without catalyst. Various PU systems containing increasing NCO/OH molar ratios were prepared. Siloxane precursors were then obtained after reaction of the NCO-terminated PUs with (3-aminopropyl)triethoxysilane, resulting in silane-terminated polymers. These structures were confirmed by different analytical techniques. Finally, four series of xerogels were prepared via a sol–gel process from the siloxane precursors, and their properties were evaluated depending on varying parameters such as the inorganic network crosslinking density. The final xerogels exhibited adequate properties in connection with biomedical applications such as a high in vitro degradation up to 15 wt% after 12 weeks.


Sign in / Sign up

Export Citation Format

Share Document