scholarly journals Zeolite Incorporated Polycaprolactone/Zeolite Nanocomposite Membranes for Silver Removal

Author(s):  
N. Sultana ◽  
M. S. I. Rusli ◽  
M. I. Hassan

The presence of heavy metals in drinking water leads to several health problems. Nano and micro fiber membranes can be used to overcome this through nano or microfiltration process. In this study, polycaprolactone (PCL)/zeolite electrospun composite membranes were fabricated and characterized. PCL is one of the synthetic polymers used in biomedical applications. It has several advantages, including biocompatibility, biodegradability and mechanical flexibility. On the other hand, zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Electrospinning is a promising technique to produce membranes by applying high voltage electricity. In this research, an electrospinning technique was used to fabricate the electrospun membrane based on PCL and zeolite. In order to produce electrospun membrane, 15% (w/v) of PCL polymer solution was dissolved in acetone and 20% (w/v) zeolite nanoparticles were incorporated into the PCL polymer solution. The diameter range of fiber was 2-6 µm. Zeolite nanoparticles were distributed homogenously into the fibers. EDX spectrum confirmed the presence of zeolite throughout the membrane. From the performance testing, it was revealed that the membrane can be potentially used as microfiltration to entrap silver contaminants in drinking water. Apart of that, the membranes are prepared with biocompatible, non-toxic materials which can be eco-friendly.

2019 ◽  
Vol 15 (3) ◽  
pp. 356-360
Author(s):  
Muhammad Syhamiel Iqhwan Rusli ◽  
Mohd Izzat Hassan ◽  
Naznin Sultana ◽  
Ahmad Fauzi Ismail

Polycaprolactone (PCL) is one of the synthetic polymers used in biomedical applications.  PCL has several advantages including biocompatibility, biodegradability and mechanical flexibility. On the other hand, zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents.  Electrospinning is a promising technique to produce membranes by applying high voltage electricity. In this research, an electrospinning technique was used to fabricate the electrospun membrane based on PCL and zeolite.  In order to produce electrospun membrane, 15% (w/v) of PCL polymer solution was dissolved in acetone and 20% (w/v) zeolite was incorporated into the PCL polymer solution.  The diameter range of fiber was 2-6 µm. Zeolite nanoparticles were distributed homogenously into the fibers.  EDX spectrum confirmed the presence of zeolite throughout the membrane. Mechanical testing revealed that the bi-layered membrane had better mechanical properties than only PCL and PCL/Zeolite membrane. In-vitro degradation experiment was carried out for 21 days and the membranes were characterized after the experiment. The membrane can be potentially used as microfiltration unit to entrap silver contaminants in drinking water.  Apart of that, the membranes are prepared with biodegradable, biocompatible, non-toxic materials which are eco-friendly.


2017 ◽  
Vol 79 (1-2) ◽  
Author(s):  
Muhammad Syhamiel Iqhwan Che Rusli ◽  
Mohd Izzat Hassan ◽  
Naznin Sultana ◽  
Ahmad Fauzi Ismail

The presence of heavy metals in drinking water leads to several health problems. In this study, polycaprolactone (PCL)/zeolite nano or microfiber electrospun composite membranes, diameter range of the fibers was 2 µm- 6 µm, were fabricated by using electrospinning technique. The membranes separation processes have played very crucial roles in water purification industry. Apart from that, the membranes are prepared with biocompatible, non-toxic materials which will be eco-friendly. In order to produce electrospun membrane, 15% (w/v) of PCL polymer solution was dissolved in acetone and 20% (w/w) zeolite was incorporated into the PCL polymer solution. Electricity charged jet of polymer solution from the syringe formed an electrostatics field when the high voltage of 20kV was applied. Scanning electron micrograph (SEM) and energy dispersive spectroscopy (EDX) implemented to indicate the characterization of membranes. The water contact angle of PCL/zeolite membrane was 119.53±5.24 which was almost same as pure PCL membrane (107.73±8.54). The inducible results obtained in this study suggested that electrospun pcl and polycaprolactone/zeolite layer by layer nanofibrous membranes can be a favored verdict for the removal of heavy metal ions.


2020 ◽  
Vol 12 ◽  
Author(s):  
Naznin Sultana

Aims: This study aimed to eliminate metallic contaminants in drinking water by using electrospunbilayered microfiber membrane. Background: Fast industrialization triggers environmental pollution. Heavy metals like silver, lead and aluminum are the major contaminants that are extremely toxic and accumulate in biological tissues through the food chain and cause a health hazard. Electrospinning is a promising technique among other conventional techniques. Electrospun membranes possess suitable properties for microfiltration purposes. In this study, to fabricate electrospun membranes, polycaprolactone (PCL) and zeolites were used as materials. PCL polymer is biocompatible and biodegradable, and zeolite ismicroporous, which is good for filtration or molecular sieving application. Method: Using the electrospinning technique, PCL, PCL/zeolite, PCL and PCL/zeolite bilayeredelectrospunmembranes were fabricated. The properties of the membranes were evaluated using different techniques. The performance of the membranes was tested by filtering Aluminum (Al)in drinking water. Results: Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyses confirmed the removal of Al using the membranes. ICP-OES results showed above 90% of Al removal using PCL and PCL/zeolite electrospun membrane. Conclusion: These membranes are non-toxic and biodegradable and have the potential to be used for microfiltration purposes.


Author(s):  
Tyler Allee ◽  
Andrew Handorf ◽  
Wan-Ju Li

In this chapter authors explain electrospinning technique and how to involve electrospinning technique in biomedical engineering. It is a materials processing technique that uses an electric field to draw a polymer solution into ultra-fine fibers.   Further, this chapter aims to provide important information to researchers who aim to use electrospinning in their research. The electrospinning technique was invented a few decades ago and has recently been modified for biomedical applications.


2021 ◽  
Vol 22 (4) ◽  
pp. 1740 ◽  
Author(s):  
Selestina Gorgieva ◽  
Azra Osmić ◽  
Silvo Hribernik ◽  
Mojca Božič ◽  
Jurij Svete ◽  
...  

Herein, we prepared a series of nanocomposite membranes based on chitosan (CS) and three compositionally and structurally different N-doped graphene derivatives. Two-dimensional (2D) and quasi 1D N-doped reduced graphene oxides (N-rGO) and nanoribbons (N-rGONRs), as well as 3D porous N-doped graphitic polyenaminone particles (N-pEAO), were synthesized and characterized fully to confirm their graphitic structure, morphology, and nitrogen (pyridinic, pyrrolic, and quaternary or graphitic) group contents. The largest (0.07%) loading of N-doped graphene derivatives impacted the morphology of the CS membrane significantly, reducing the crystallinity, tensile properties, and the KOH uptake, and increasing (by almost 10-fold) the ethanol permeability. Within direct alkaline ethanol test cells, it was found that CS/N rGONRs (0.07 %) membrane (Pmax. = 3.7 mWcm−2) outperformed the pristine CS membrane significantly (Pmax. = 2.2 mWcm−2), suggesting the potential of the newly proposed membranes for application in direct ethanol fuel cells.


2014 ◽  
Vol 807 ◽  
pp. 161-168
Author(s):  
B. Narayanamoorthy ◽  
B. Dineshkumar ◽  
S. Balaji

The amino functionalized magnesium phyllosilicate clay (AC) intercalated over PVA-Nafion hybrid nanocomposite membranes were prepared by sol-gel method. The free standing membranes were obtained by solution recasting. The composition of clay materials such as AC and montmorillonite (MMT) was varied between 2-10 wt.% with respect to PVA-Nafion content. The molecular interactions and surface morphology of nanocomposite membranes were investigated by FT-IR and SEM analyses respectively. The thermal and mechanical stabilities of nanocomposite membranes were studied using TGA and Nanoindentation techniques. For 6 wt. % AC/PVA-Nafion, TGA results showed no appreciable mass change up to 380 °C and hardness calculated from nanoindentation studies was nearly 30 % higher than the other compositions. An improved conductivity was obtained for 6 wt. % AC/PVA-Nafion (1.4×10-2 S/cm) compared to pure Nafion (1.2×10-2 S/cm) and PVA-Nafion and MMT/PVA-Nafion composite membranes. From these studies, we observed that 6 wt. % AC/PVA-Nafion membrane possessed a good conductivity with higher thermal and mechanical stabilities.


2014 ◽  
Vol 989-994 ◽  
pp. 3609-3612
Author(s):  
Yong Jian Zhao

Blind source extraction (BSE) is a promising technique to solve signal mixture problems while only one or a few source signals are desired. In biomedical applications, one often knows certain prior information about a desired source signal in advance. In this paper, we explore specific prior information as a constrained condition so as to develop a flexible BSE algorithm. One can extract a desired source signal while its normalized kurtosis range is known in advance. Computer simulations on biomedical signals confirm the validity of the proposed algorithm.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1063-1075
Author(s):  
Abiodun A. Amusa ◽  
Abdul L. Ahmad ◽  
Jimoh K. Adewole

Lignocellulosic biomass was delignified by combining physical and chemical pretreatment techniques. Then, a polysulfone-polyethylene glycol blend, which was compatible with the lignin-free biomass (0 wt% to 3.0 wt%), was used to fabricate composite membranes. The presence of hydroxyl groups after the pretreatment was evaluated via Fourier transform infrared spectroscopy. The rheology of the polymer solutions was assessed via the viscometric method. Also, the hydrophobicity of the fabricated membranes was determined using contact angle and porosity measurements. The fabricated membranes with near superhydrophobic properties (a contact angle of approximately 140°) based on this study revealed that contactor systems and biomedical applications would benefit from this modification.


Author(s):  
Richard P. Long ◽  
Xinguo Zhang

Soil in and near transportation facilities often is contaminated with lead because lead once was used as a base for gasoline and paint. Dealing with contaminated soil is difficult because the toxic material must be treated to protect the public from direct exposure. Stabilization and solidification is a promising technique for protecting the public from toxic materials in soils by decreasing the possibility of human exposure and decreasing the mobility of the contaminant. The results of a laboratory investigation of the feasibility of stabilization and solidification of contaminated soil using cement in combination with various additives are presented. Mobility of lead and other contaminants was measured by dynamic diffusion and compared with the standard test results of the toxic characteristic leaching procedure. Several additives were tried. Apatite and sodium silicate were found to be the most effective in reducing the mobility of the lead. The compacted dry density of the solidified soil had a great effect on the leaching characteristics. The leaching of lead from deteriorated solidified soil was simulated by crushing a sample containing apatite and conducting a dynamic diffusion test on the crushed sample. The diffusion coefficient was used to compare the effect of additives and other treatments.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 57 ◽  
Author(s):  
Arzu Özbey ◽  
Mehrdad Karimzadehkhouei ◽  
Hossein Alijani ◽  
Ali Koşar

Inertial Microfluidics offer a high throughput, label-free, easy to design, and cost-effective solutions, and are a promising technique based on hydrodynamic forces (passive techniques) instead of external ones, which can be employed in the lab-on-a-chip and micro-total-analysis-systems for the focusing, manipulation, and separation of microparticles in chemical and biomedical applications. The current study focuses on the focusing behavior of the microparticles in an asymmetric curvilinear microchannel with curvature angle of 280°. For this purpose, the focusing behavior of the microparticles with three different diameters, representing cells with different sizes in the microchannel, was experimentally studied at flow rates from 400 to 2700 µL/min. In this regard, the width and position of the focusing band are carefully recorded for all of the particles in all of the flow rates. Moreover, the distance between the binary combinations of the microparticles is reported for each flow rate, along with the Reynolds number corresponding to the largest distances. Furthermore, the results of this study are compared with those of the microchannel with the same curvature angle but having a symmetric geometry. The microchannel proposed in this study can be used or further modified for cell separation applications.


Sign in / Sign up

Export Citation Format

Share Document