scholarly journals Possibilities of Upgrading Solid Underutilized Lingo-cellulosic Feedstock (Carob Pods) to Liquid Bio-fuel: Bio-ethanol Production and Electricity Generation in Fuel Cells - A Critical Appraisal of the Required Processes

2017 ◽  
Vol 4 (1) ◽  
pp. 25 ◽  
Author(s):  
John Vourdoubas ◽  
Vasiliki K. Skoulou

The exploitation of rich in sugars lingo-cellulosic residue of carob pods for bio-ethanol and bio-electricity generation has been investigated. The process could take place in two (2) or three (3) stages including: a) bio-ethanol production originated from carob pods, b) direct exploitation of bio-ethanol to fuel cells for electricity generation, and/or c) steam reforming of ethanol for hydrogen production and exploitation of the produced hydrogen in fuel cells for electricity generation. Surveying the scientific literature it has been found that the production of bio-ethanol from carob pods and electricity fed to the ethanol fuel cells for hydrogen production do not present any technological difficulties. The economic viability of bio-ethanol production from carob pods has not yet been proved and thus commercial plants do not yet exist. The use, however, of direct fed ethanol fuel cells and steam reforming of ethanol for hydrogen production are promising processes which require, however, further research and development (R&D) before reaching demonstration and possibly a commercial scale. Therefore the realization of power generation from carob pods requires initially the investigation and indication of the appropriate solution of various technological problems. This should be done in a way that the whole integrated process would be cost effective. In addition since the carob tree grows in marginal and partly desertified areas mainly around the Mediterranean region, the use of carob’s fruit for power generation via upgrading of its waste by biochemical and electrochemical processes will partly replace fossil fuels generated electricity and will promote sustainability.

2012 ◽  
Vol 187 ◽  
pp. 299-305 ◽  
Author(s):  
Jing Li ◽  
Qi-Jian Zhang ◽  
Xu Long ◽  
Ping Qi ◽  
Zhao-Tie Liu ◽  
...  

2017 ◽  
Vol 434 ◽  
pp. 123-133 ◽  
Author(s):  
Ji Hwan Song ◽  
Sangbeom Yoo ◽  
Jaekyeong Yoo ◽  
Seungwon Park ◽  
Min Yeong Gim ◽  
...  

2006 ◽  
Vol 3 (3) ◽  
pp. 346-350 ◽  
Author(s):  
Antonio Carlos Caetano de Souza ◽  
José Luz-Silveira ◽  
Maria Isabel Sosa

Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity. The use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7Nm3∕h of hydrogen as feedstock of a 1kW PEMFC. The global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206°C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700°C. However, when the temperature attains 700°C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700°C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However, the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.


2021 ◽  
Vol 132 (2) ◽  
pp. 907-919
Author(s):  
O. Shtyka ◽  
Z. Dimitrova ◽  
R. Ciesielski ◽  
A. Kedziora ◽  
G. Mitukiewicz ◽  
...  

AbstractEthanol steam reforming was studied over Ni supported catalysts. The effects of support (Al2O3, Al2O3–ZnO, and Al2O3–CeO2), metal loading, catalyst activation method, and steam-to-ethanol molar feed ratio were investigated. The properties of catalysts were studied by N2 physisorption, TPD-CO2, X-ray diffraction, and temperature programmed reduction. After activity tests, the catalysts were analyzed by TOC analysis. The catalytic activity measurements showed that the addition either of ZnO SSor CeO2 to alumina enhances both ethanol conversion and promotes selectivity towards hydrogen formation. The same effects were observed for catalysts with higher metal loadings. High process temperature and high water-to-ethanol ratio were found to be beneficial for hydrogen production. An extended catalyst stability tests showed no loss of activity over 50 h on reaction stream. The TOC analysis of spent catalysts revealed only insignificant amounts of carbon deposit.


2009 ◽  
Vol 190 (2) ◽  
pp. 525-533 ◽  
Author(s):  
Luciene P.R. Profeti ◽  
Joelmir A.C. Dias ◽  
José M. Assaf ◽  
Elisabete M. Assaf

Author(s):  
Amit Kumar Chaurasia ◽  
Prasenjit Mondal

Increasing population and rapid urbanization lead to degradation of the natural environment while waste generation and energy crisis are major challenges in the most developing country. Hydrogen is considered one of the most promising energy carriers and capable to replace fossil fuels and meet the world's energy demand and concomitantly reduce toxic emissions. Currently, the world produces around 50 million tonnes/year from the process (i.e., electrolysis of water, steam reforming of hydrocarbons, and auto-thermal processes), but these processes are not sustainable and economical due to energy requirements and waste/pollutants generation. These challenges required growing interest in renewable energy resources such as hydrogen as an energy carrier. Hydrogen production from renewable sources attracted recent research attention because of its potential for sustainability and diversity. Hydrogen can be produced by various thermal, chemical, and biological technologies that include steam reforming, electrolysis, biomass conversion, solar conversion, and biological conversion.


Sign in / Sign up

Export Citation Format

Share Document