scholarly journals Exact and Approximate Compression of Transfer Matrices for Graph Homomorphisms

2008 ◽  
Vol 11 ◽  
pp. 1-14 ◽  
Author(s):  
Per Håkan Lundow ◽  
Klas Markström

AbstractThe aim of this paper is to extend the previous work on transfer matrix compression in the case of graph homomorphisms. For H-homomorphisms of lattice-like graphs we demonstrate how the automorphisms of H, as well as those of the underlying lattice, can be used to reduce the size of the relevant transfer matrices. As applications of this method we give currently best known bounds for the number of 4- and 5-colourings of the square grid, and the number of 3- and 4-colourings of the three-dimensional cubic lattice. Finally, we also discuss approximate compression of transfer matrices.

2015 ◽  
Vol 37 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Pham Chi Vinh ◽  
Nguyen Thi Khanh Linh ◽  
Vu Thi Ngoc Anh

This paper presents  a technique by which the transfer matrix in explicit form of an orthotropic layer can be easily obtained. This transfer matrix is applicable for both the wave propagation problem and the reflection/transmission problem. The obtained transfer matrix is then employed to derive the explicit secular equation of Rayleigh waves propagating in an orthotropic half-space coated by an orthotropic layer of arbitrary thickness.


2021 ◽  
pp. 107754632199759
Author(s):  
Jianchun Yao ◽  
Mohammad Fard ◽  
John L Davy ◽  
Kazuhito Kato

Industry is moving towards more data-oriented design and analyses to solve complex analytical problems. Solving complex and large finite element models is still challenging and requires high computational time and resources. Here, a modular method is presented to predict the transmission of vehicle body vibration to the occupants’ body by combining the numerical transfer matrices of the subsystems. The transfer matrices of the subsystems are presented in the form of data which is sourced from either physical tests or finite element models. The structural dynamics of the vehicle body is represented using a transfer matrix at each of the seat mounting points in three triaxial (X–Y–Z) orientations. The proposed method provides an accurate estimation of the transmission of the vehicle body vibration to the seat frame and the seated occupant. This method allows the combination of conventional finite element analytical model data and the experimental data of subsystems to accurately predict the dynamic performance of the complex structure. The numerical transfer matrices can also be the subject of machine learning for various applications such as for the prediction of the vibration discomfort of the occupant with different seat and foam designs and with different physical characteristics of the occupant body.


2021 ◽  
Vol 22 (11) ◽  
pp. 5914
Author(s):  
Mengsheng Zha ◽  
Nan Wang ◽  
Chaoyang Zhang ◽  
Zheng Wang

Reconstructing three-dimensional (3D) chromosomal structures based on single-cell Hi-C data is a challenging scientific problem due to the extreme sparseness of the single-cell Hi-C data. In this research, we used the Lennard-Jones potential to reconstruct both 500 kb and high-resolution 50 kb chromosomal structures based on single-cell Hi-C data. A chromosome was represented by a string of 500 kb or 50 kb DNA beads and put into a 3D cubic lattice for simulations. A 2D Gaussian function was used to impute the sparse single-cell Hi-C contact matrices. We designed a novel loss function based on the Lennard-Jones potential, in which the ε value, i.e., the well depth, was used to indicate how stable the binding of every pair of beads is. For the bead pairs that have single-cell Hi-C contacts and their neighboring bead pairs, the loss function assigns them stronger binding stability. The Metropolis–Hastings algorithm was used to try different locations for the DNA beads, and simulated annealing was used to optimize the loss function. We proved the correctness and validness of the reconstructed 3D structures by evaluating the models according to multiple criteria and comparing the models with 3D-FISH data.


2017 ◽  
Vol 50 (3) ◽  
pp. 830-839 ◽  
Author(s):  
S. M. Suturin ◽  
V. V. Fedorov ◽  
A. M. Korovin ◽  
N. S. Sokolov ◽  
A. V. Nashchekin ◽  
...  

The development of growth techniques aimed at the fabrication of nanoscale heterostructures with layers of ferroic 3dmetals on semiconductor substrates is very important for their potential usage in magnetic media recording applications. A structural study is presented of single-crystal nickel island ensembles grown epitaxially on top of CaF2/Si insulator-on-semiconductor heteroepitaxial substrates with (111), (110) and (001) fluorite surface orientations. The CaF2buffer layer in the studied multilayer system prevents the formation of nickel silicide, guides the nucleation of nickel islands and serves as an insulating layer in a potential tunneling spin injection device. The present study, employing both direct-space and reciprocal-space techniques, is a continuation of earlier research on ferromagnetic 3dtransition metals grown epitaxially on non-magnetic and magnetically ordered fluorides. It is demonstrated that arrays of stand-alone faceted nickel islands with a face-centered cubic lattice can be grown controllably on CaF2surfaces of (111), (110) and (001) orientations. The proposed two-stage nickel growth technique employs deposition of a thin seeding layer at low temperature followed by formation of the islands at high temperature. The application of an advanced three-dimensional mapping technique exploiting reflection high-energy electron diffraction (RHEED) has proved that the nickel islands tend to inherit the lattice orientation of the underlying fluorite layer, though they exhibit a certain amount of {111} twinning. As shown by scanning electron microscopy, grazing-incidence X-ray diffraction (GIXD) and grazing-incidence small-angle X-ray scattering (GISAXS), the islands are of similar shape, being faceted with {111} and {100} planes. The results obtained are compared with those from earlier studies of Co/CaF2epitaxial nanoparticles, with special attention paid to the peculiarities related to the differences in lattice structure of the deposited metals: the dual-phase hexagonal close-packed/face-centered cubic lattice structure of cobalt as opposed to the single-phase face-centered cubic lattice structure of nickel.


Author(s):  
T. Önsay

Abstract The wave-mode representation is utilized to obtain a more efficient form to the conventional transfer matrix method for bending vibrations of beams. The proposed improvement is based on a phase-variable canonical state representation of the equation governing the time-harmonic flexural vibrations of a beam. Transfer matrices are obtained for external forces, step-change of beam properties, intermediate supports and for boundaries. The transfer matrices are utilized to obtain the vibration response of a point-excited single-span beam with general boundary conditions. The general characteristic equation and the transfer mobility of a single-span beam are determined. The application of the analytical results are demonstrated on physical structures with different boundary conditions. A hybrid model is developed to incorporate measured impedance of nonideal boundaries into the transfer matrix method. The analytical results are found to be in excellent agreement with experimental measurements.


2009 ◽  
Vol 65 (3) ◽  
pp. m139-m142 ◽  
Author(s):  
Rajesh Koner ◽  
Israel Goldberg

The title compound, (5,10,15,20-tetra-4-pyridylporphyrinato)zinc(II) 1,2-dichlorobenzene disolvate, [Zn(C40H24N8)]·2C6H4Cl2, contains a clathrate-type structure. It is composed of two-dimensional square-grid coordination networks of the self-assembled porphyrin moiety, which are stacked one on top of the other in a parallel manner. The interporphyrin cavities of the overlapping networks combine into channel voids accommodated by the dichlorobenzene solvent. Molecules of the porphyrin complex are located on crystallographic inversion centres. The observed two-dimensional assembly mode of the porphyrin units represents a supramolecular isomer of the unique three-dimensional coordination frameworks of the same porphyrin building block observed earlier. The significance of this study lies in the discovery of an additional supramolecular isomer of the rarely observed structures of metalloporphyrins self-assembled directly into extended coordination polymers without the use of external ligand or metal ion auxiliaries.


1982 ◽  
Vol 49 (2) ◽  
pp. 417-424
Author(s):  
T. Irie ◽  
G. Yamada ◽  
Y. Muramoto

The axisymmetrical steady-state response of an internally damped, annular double-plate system interconnected by several springs uniformly distributed along concentric circles to a sinusoidally varying force is determined by the transfer matrix technique. Once the transfer matrix of an annular plate has been determined analytically, the response of the system is obtained by the product of the transfer matrices of each plate and the point matrices at each connecting circle. By the application of the method, the driving-point impedance, transfer impedance, and force transmissibility are calculated numerically for a free-clamped system and a simply supported system.


Sign in / Sign up

Export Citation Format

Share Document