Ketamine: yay or neigh? Implications for cardiovascular regulation and considerations for field use

2021 ◽  
Author(s):  
Lindsey F. Berthelsen
2007 ◽  
Vol 21 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Yunfeng Sun ◽  
Yinling Zhang ◽  
Ning He ◽  
Xufeng Liu ◽  
Danmin Miao

Abstract. Caffeine placebo expectation seems to improve vigilance and cognitive performance. This study investigated the effect of caffeine and placebo expectation on vigilance and cognitive performance during 28 h sleep deprivation. Ten healthy males volunteered to take part in the double-blind, cross-over study, which required participants to complete five treatment periods of 28 h separated by 1-week wash-out intervals. The treatments were no substance (Control); caffeine 200 mg at 00:00 (C200); placebo 200 mg at 00:00 (P200); twice caffeine 200 mg at 00:00 and 04:00 (C200-C200); caffeine 200 mg at 00:00 and placebo 200 mg at 04:00 (C200-P200). Participants were told that all capsules were caffeine and given information about the effects of caffeine to increase expectation. Vigilance was assessed by a three-letter cancellation test, cognitive functions by the continuous addition test and Stroop test, and cardiovascular regulation by heart rate and blood pressure. Tests were performed bihourly from 00:00 to 10:00 of the second day. Results indicated that C200-P200 and C200-C200 were more alert (p < .05) than Control and P200. Their cognitive functions were higher (p < .05) than Control and P200. Also, C200-P200 scored higher than C200 in the letter cancellation task (p < .05). No test showed any significant differences between C200-P200 and C200-C200. The results demonstrated that the combination of caffeine 200 mg and placebo 200 mg expectation exerted prolonged positive effects on vigilance and cognitive performance.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 237-240
Author(s):  
P. Hammer ◽  
D. Litvack ◽  
J. P. Saul

Abstract:A computer model of cardiovascular control has been developed based on the response characteristics of cardiovascular control components derived from experiments in animals and humans. Results from the model were compared to those obtained experimentally in humans, and the similarities and differences were used to identify both the strengths and inadequacies of the concepts used to form the model. Findings were confirmatory of some concepts but contrary to some which are firmly held in the literature, indicating that understanding the complexity of cardiovascular control probably requires a combination of experiments and computer models which integrate multiple systems and allow for determination of sufficiency and necessity.


Hypertension ◽  
1995 ◽  
Vol 25 (5) ◽  
pp. 1075-1082 ◽  
Author(s):  
Hans P. Schobel ◽  
Roland E. Schmieder ◽  
Silke Hartmann ◽  
Hartmut Schächinger ◽  
Friedrich C. Luft

1985 ◽  
Vol 69 (5) ◽  
pp. 533-540 ◽  
Author(s):  
Gianfranco Parati ◽  
Guido Pomidossi ◽  
Agustin Ramirez ◽  
Bruno Cesana ◽  
Giuseppe Mancia

1. In man evaluation of neural cardiovascular regulation makes use of a variety of tests which address the excitatory and reflex inhibitory neural influences that control circulation. Because interpretation of these tests is largely based on the magnitude of the elicited haemodynamic responses, their reproducibility in any given subject is critical. 2. In 39 subjects with continuous blood pressure (intra-arterial catheter) and heart rate monitoring we measured (i) the blood pressure and heart rate rises during hand-grip and cold-pressor test, (ii) the heart rate changes occurring during baroreceptor stimulation and deactivation by injection of phenylephrine and trinitroglycerine, and (iii) the heart rate and blood pressure changes occurring with alteration in carotid baroreceptor activity by a neck chamber. Each test was carefully standardized and performed at 30 min intervals for a total of six times in each subject. 3. The results showed that the responses to any test were clearly different from one another and that this occurred in all subjects studied. For the group as a whole the average response variability (coefficient of variation) ranged from 10.2% for the blood pressure response to carotid baroreceptor stimulation to 44.2% for the heart rate response to cold-pressor test. The variability of the responses was not related to basal blood pressure or heart rate, nor to the temporal sequence of the test performance. 4. Thus tests employed for studying neural cardiovascular control in man produce responses whose reproducibility is limited. This phenomenon may make it more difficult to define the response magnitude typical of each subject, as well as its comparison in different conditions and diseases.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27404 ◽  
Author(s):  
Carol H. Y. Wu ◽  
Julie Y. H. Chan ◽  
Samuel H. H. Chan ◽  
Alice Y. W. Chang

2014 ◽  
Vol 29 (5) ◽  
pp. 605-612 ◽  
Author(s):  
Xiang Chen ◽  
Ning Liu ◽  
Yuanyuan Huang ◽  
Feng Yun ◽  
Jue Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document