scholarly journals Pancreatic acinar cells: effect of acetylcholine, pancreozymin, gastrin and secretin on membrane potential and resistance in vivo and in vitro.

1975 ◽  
Vol 247 (2) ◽  
pp. 461-471 ◽  
Author(s):  
O H Petersen ◽  
N Ueda
1998 ◽  
Vol 17 (4) ◽  
pp. 219-230 ◽  
Author(s):  
Ludwig Jonas ◽  
Ulrike Mikkat ◽  
Anke Witte ◽  
Uta Beckmann ◽  
Katrin Dölker ◽  
...  

In preceding papers we demonstrated an inhibitory effect of wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA) on the cholecystokinin (CCK) binding to the CCK receptor of rat pancreatic cells and also on the CCK induced Ca2+release and α-amylase secretionin vitroas well as on pancreatic secretion of intact ratsin vivo. In the present study we show the same inhibitory effect of both lectins on the cerulein pancreatitis of rats. This acute pancreatitis was induced by supramaximal injections (5 µg/kg/h iv or 10 µg/kg/h ip) of the CCK analogue cerulein in rats every hour. To monitor the degree of pancreatitis, we measured the number and diameter of injury vacuoles in the pancreatic acinar cells as one of the most important signs of this type of pancreatitis by light microscopic morphometry with two different systems on paraffin sections. Furthermore, the serum α-amylase activity was measured biochemically. We found a correlation between the diameter of vacuoles inside the acinar cells and the serum enzyme activity up to 24 h. The simultaneous ip administration of cerulein and WGA or UEA in a dosage of 125 µg/kg/h for 8 h led to a reduction of vacuolar diameter from 13.1 ± 2.0 µm (cerulein) to 7.5 ± 1.1 µm (cerulein + WGA) or 7.2 ± 1.3 µm (cerulein + UEA). The serum amylase activity was reduced from 63.7 ± 15.8 mmol/l \times min (cerulein) to 37.7 ± 11.8 (cerulein + WGA) or 39.4; +52.9; -31.1 (cerulein + UEA-I). Both parameters allow the grading this special type of pancreatitis to demonstrate the protective effect of the lectins.


1996 ◽  
Vol 44 (12) ◽  
pp. 1373-1378 ◽  
Author(s):  
T A Cook ◽  
K J Mesa ◽  
B A Gebelein ◽  
R A Urrutia

Members of the dynamin superfamily are GTPases which have been shown to support receptor-mediated endocytosis in vivo and bind to growth factor receptor-associated proteins in vitro. In acinar cells of the pancreas, receptor-mediated endocytosis is very important for the recycling of membranes after secretory granule release. Therefore, characterization of the molecular machinery responsible for this process is critical for a better understanding of this phenomenon. In this study we sought to determine the expression pattern of the endocytic GTPase dynamin II during pancreatic acinar cell differentiation in developing rat embryos and in dexamethasone-treated AR42J cells using Western blot, Northern blot, and immunocytochemical analyses. During pancreatic development, dynamin immunoreactivity is almost undetectable until day E17 but undergoes significant upregulation in acinar cells starting at E18. In addition, the levels of dynamin mRNA and protein in AR42J cells increase approximately threefold during dexamethasone-induced acinar differentiation. The increase in dynamin levels that occurs in both embryonic pancreatic cells and dexamethasone-treated AR42J cells correlates with the establishment of a more differentiated acinar phenotype. Therefore, these results suggest a potential role for dynamin in supporting receptor-mediated endocytosis in mature pancreatic acinar cells.


2004 ◽  
Vol 286 (2) ◽  
pp. G204-G213 ◽  
Author(s):  
Anna S. Gukovskaya ◽  
Saeed Hosseini ◽  
Akihiko Satoh ◽  
Jason H. Cheng ◽  
Kyung J. Nam ◽  
...  

Mechanisms of alcoholic pancreatitis remain unknown. Previously, we showed that ethanol feeding sensitizes rats to pancreatitis caused by CCK-8, at least in part, by augmenting activation of the proinflammatory transcription factor NF-κB. To elucidate the mechanism of sensitization, here we investigate the effect of ethanol on Ca2+- and PKC-mediated pathways of CCK-induced NF-κB activation using an in vitro system of rat pancreatic acini incubated with ethanol. Ethanol augmented CCK-8-induced activation of NF-κB, similar to our in vivo findings with ethanol-fed rats. In contrast, ethanol prevented NF-κB activation caused by thapsigargin, an agent that mobilizes intracellular Ca2+ bypassing the receptor. Pharmacological analysis showed that NF-κB activation by thapsigargin but not by CCK-8 is mediated through the calcineurin pathway and that the inhibitory effect of ethanol on the thapsigargin-induced NF-κB activation could be through inhibiting this pathway. Ethanol augmented NF-κB activation induced by the phorbol ester PMA, a direct activator of PKC. Inhibitory analysis demonstrated that Ca2+-independent (novel and/or atypical) PKC isoforms are involved in NF-κB activation induced by both CCK-8 and PMA in cells treated and not treated with ethanol. The results indicate that ethanol differentially affects the Ca2+/calcineurin- and PKC-mediated pathways of NF-κB activation in pancreatic acinar cells. These effects may play a role in the ability of ethanol to sensitize pancreas to the inflammatory response and pancreatitis.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0143575 ◽  
Author(s):  
Padmanabhan Srinivasan ◽  
Edwin C. Thrower ◽  
Gopalakrishnan Loganathan ◽  
A. N. Balamurugan ◽  
Veedamali S. Subramanian ◽  
...  

1989 ◽  
Vol 170 (1) ◽  
pp. 87-104 ◽  
Author(s):  
D Lo ◽  
L C Burkly ◽  
R A Flavell ◽  
R D Palmiter ◽  
R L Brinster

To study the nature of tolerance to antigens not expressed by cells of the lymphoid system, expression of class II MHC I-E was targeted to the acinar cells of the exocrine pancreas in transgenic mice (elastase [EL]-I-E). Despite the absence of detectable I-E in the thymus of EL-I-E transgenic mice, both thymocytes and peripheral T lymphocytes were tolerant to I-E, and the pancreas was free of autoimmune infiltrates. Nontolerant T cells adoptively transferred into irradiated or T-depleted transgenic mice rapidly destroy the I-E+ components of the pancreas; however, adoptive transfer of nontolerant T lymphocytes into nonirradiated transgenic mice do not. These results suggest that tolerance in transgenic mice is maintained by some peripheral tolerance mechanism. However, further studies indicate that tolerance in transgenic mice is not maintained by specific Ts cells. For example, cell mixing experiments both in vitro and in vivo fail to reveal dominant unresponsiveness. Furthermore, nontolerant T cells injected into otherwise unmanipulated EL-I-E mice can be primed in situ (by injections of I-E+ spleen cells) to destroy the I-E+ acinar cells.


1964 ◽  
Vol 20 (3) ◽  
pp. 415-433 ◽  
Author(s):  
Norman K. Wessells

Pieces of mouse embryonic pancreatic epithelium cultured in an inductive situation in vitro, or when examined at critical times in vivo, show a gradient of zymogen granule accumulation. Cells located internally in explants, or in central acini in vivo, show this overt differentiation first. As the epithelia age, the more peripheral cell population proceeds in a similar differentiation. Observations of autoradiograms of H3-thymidine-labeled tissues indicate that the first cells which cease incorporating the DNA-precursor are in the central regions that differentiate first. In older explants, thymidine incorporation is largely restricted to the periphery of the tissue as zymogen appears in the internal cells. Evidence suggests that cells or nuclei which have replicated DNA move inward before dividing. Some daughter cells apparently return peripherad to divide again, whereas others remain centrally where they undergo differentiation. During at least the first 24 hours of these maturational changes, mesenchyme has a stimulatory effect upon epithelial thymidine-incorporation frequencies. The presence of a post-DNA-synthetic population is seen in the form of a group of nonlabeling central cells that remains intact in the midst of a labeled epithelium for as long as 48 hours in vitro (from 72 to 120 hours). If explants are treated with 5-bromodeoxyuridine for any 24-hour segment of the 0 to 72-hour period, before the non-incorporating population arises, no subsequent overt zymogen formation occurs. If explants are treated continuously from 72 to 120 hours, on the other hand, zymogen still forms in some internal cells. Presumably, this differentiation is limited to the postmitotic population as revealed in the thymidine autoradiograms.


Author(s):  
Yifan Ren ◽  
Wuming Liu ◽  
Jia Zhang ◽  
Jianbin Bi ◽  
Meng Fan ◽  
...  

Excessive endoplasmic reticulum (ER) stress contributes significantly to the pathogenesis of exocrine acinar damage in acute pancreatitis. Our previous study found that milk fat globule EGF factor 8 (MFG-E8), a lipophilic glycoprotein, alleviates acinar cell damage during AP via binding to αvβ3/5 integrins. Ligand-dependent integrin-FAK activation of STAT3 was reported to be of great importance for maintaining cellular homeostasis. However, MFG-E8’s role in ER stress in pancreatic exocrine acinar cells has not been evaluated. To study this, thapsigargin, brefeldin A, tunicamycin and cerulein + LPS were used to induce ER stress in rat pancreatic acinar cells in vitro. L-arginine- and cerulein + LPS-induced acute pancreatitis in mice were used to study ER stress in vivo. The results showed that MFG-E8 dose-dependently inhibited ER stress under both in vitro and in vivo conditions. MFG-E8 knockout mice suffered more severe ER stress and greater inflammatory response after L-arginine administration. Mechanistically, MFG-E8 increased phosphorylation of FAK and STAT3 in cerulein + LPS-treated pancreatic acinar cells. The presence of specific inhibitors of αvβ3/5 integrin, FAK or STAT3 abolished MFG-E8’s effect on cerulein + LPS-induced ER stress in pancreatic acinar cells. In conclusion, MFG-E8 maintains cellular homeostasis by alleviating ER stress in pancreatic exocrine acinar cells.


2001 ◽  
Vol 120 (5) ◽  
pp. A722-A722
Author(s):  
Y BI ◽  
C LOGSDON

2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


Sign in / Sign up

Export Citation Format

Share Document