scholarly journals Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1

2007 ◽  
Vol 583 (2) ◽  
pp. 767-784 ◽  
Author(s):  
Cecilia Paolini ◽  
Marco Quarta ◽  
Alessandra Nori ◽  
Simona Boncompagni ◽  
Marta Canato ◽  
...  
1993 ◽  
Vol 264 (3) ◽  
pp. C577-C582 ◽  
Author(s):  
A. J. Baker ◽  
M. C. Longuemare ◽  
R. Brandes ◽  
M. W. Weiner

Force and intracellular calcium signals were monitored in whole bullfrog semitendinosus muscles during fatigue produced by intermittent tetanic stimulation. Intracellular calcium signals were monitored using the fluorescent calcium-sensitive indicator indo-1 from the ratio of fluorescence intensities (R) at 400 and 470 nm. Fatiguing stimulation caused 1) proportional decreases of tetanic force and R, suggesting a component of the decreased force during fatigue of whole muscle may be due to insufficient calcium to activate contraction; 2) a progressive slowing of the relaxation of both force and R, suggesting slowed force relaxation may be mediated by slowed calcium removal from the myoplasm; 3) an increase of resting level R, suggesting impaired calcium removal from, or increased leakage to the cytosol; 4) prolongation of the twitch contraction, which was paralleled by changes in R. These findings are consistent with previous single fiber studies and suggest that changes in whole muscle contractility with fatigue may be partially mediated by changes in calcium handling by the cell.


PLoS ONE ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. e19225 ◽  
Author(s):  
Davide Basco ◽  
Grazia Paola Nicchia ◽  
Angelo D'Alessandro ◽  
Lello Zolla ◽  
Maria Svelto ◽  
...  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Lauran Madden ◽  
Mark Juhas ◽  
William E Kraus ◽  
George A Truskey ◽  
Nenad Bursac

Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7+ cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.


2017 ◽  
Author(s):  
Amy E. Brinegar ◽  
Zheng Xia ◽  
James A. Loehr ◽  
Wei Li ◽  
George G. Rodney ◽  
...  

AbstractPostnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first two weeks after birth are particularly dynamic for differential gene expression and AS transitions, and calciumhandling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin targets Nfatc3 and Nfatc2, and affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of AS during muscle postnatal development.


2020 ◽  
Author(s):  
Sandra Zampieri ◽  
Marco Sandri ◽  
Joseph L. Cheatwood ◽  
Rajesh P. Balaraman ◽  
Luke B. Anderson ◽  
...  

Abstract Background: The ERG1a potassium channel has been detected in the atrophying skeletal muscle of mice experiencing either muscle disuse or cancer cachexia and further evidenced to contribute to muscle deterioration by enhancing ubiquitin proteolysis; however, to our knowledge, ERG1 has not been reported in human skeletal muscle. Methods and Results: Here, using immunohistochemistry, we detect ERG1 immunofluorescence in human Rectus abdominis skeletal muscle sarcolemma. Further, using single point brightness data, we report detection of ERG1 immunofluorescence at low levels in the Rectus abdominis muscle sarcolemma of young adult humans and show that it trends toward greater levels (10.6%) in healthy aged adults. Interestingly, we detect ERG1 immunofluorescence at a statistically greater level (53.6%; p<0.05) in the skeletal muscle of older people having cancer cachexia than in age-matched adults. Importantly, using immunoblot, we reveal that ERG1 protein is 38% (p<0.09) more abundant in the skeletal muscle of cachectic older adults than in healthy age-matched controls. Additionally, we report that the ERG1 fluorescent pattern is consistent with I-band localization. Conclusions: The data suggest that ERG1 may be related to muscle loss in humans and is located in t-tubules where it could influence calcium handling.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242443
Author(s):  
Carla Basualto-Alarcón ◽  
Félix A. Urra ◽  
María Francisca Bozán ◽  
Fabián Jaña ◽  
Alejandra Trangulao ◽  
...  

Idiopathic Inflammatory Myopathies (IIMs) have been studied within the framework of autoimmune diseases where skeletal muscle appears to have a passive role in the illness. However, persiting weakness even after resolving inflammation raises questions about the role that skeletal muscle plays by itself in these diseases. "Non-immune mediated" hypotheses have arisen to consider inner skeletal muscle cell processes as trigger factors in the clinical manifestations of IIMs. Alterations in oxidative phosphorylation, ATP production, calcium handling, autophagy, endoplasmic reticulum stress, among others, have been proposed as alternative cellular pathophysiological mechanisms. In this study, we used skeletal muscle-derived cells, from healthy controls and IIM patients to determine mitochondrial function and mitochondrial ability to adapt to a metabolic stress when deprived of glucose. We hypothesized that mitochondria would be dysfunctional in IIM samples, which was partially true in normal glucose rich growing medium as determined by oxygen consumption rate. However, in the glucose-free and galactose supplemented condition, a medium that forced mitochondria to function, IIM cells increased their respiration, reaching values matching normal derived cells. Unexpectedly, cell death significantly increased in IIM cells under this condition. Our findings show that mitochondria in IIM is functional and the decrease respiration observed is part of an adaptative response to improve survival. The increased metabolic function obtained after forcing IIM cells to rely on mitochondrial synthesized ATP is detrimental to the cell’s viability. Thus, therapeutic interventions that activate mitochondria, could be detrimental in IIM cell physiology, and must be avoided in patients with IIM.


2012 ◽  
Vol 302 (1) ◽  
pp. C88-C99 ◽  
Author(s):  
Serge Summermatter ◽  
Raphael Thurnheer ◽  
Gesa Santos ◽  
Barbara Mosca ◽  
Oliver Baum ◽  
...  

Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue. Intracellular calcium levels might play a role in both adaptive phenomena, yet a role for PGC-1α in the adaptation of calcium handling in skeletal muscle remains unknown. Using mice with transgenic overexpression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium-releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α overexpression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction. During prolonged muscle activity, the delayed calcium clearance might facilitate force production in mice overexpressing PGC-1α. Our results reveal a novel role of PGC-1α in altering the contractile properties of skeletal muscle by modulating calcium handling. Importantly, our findings indicate PGC-1α to be both down- as well as upstream of calcium signaling in this tissue. Overall, our findings suggest that in the adaptation to chronic exercise, PGC-1α reduces maximal force, increases resistance to fatigue, and drives fiber type switching partly through remodeling of calcium transients, in addition to promoting slow-type myofibrillar protein expression and adequate energy supply.


Sign in / Sign up

Export Citation Format

Share Document