scholarly journals Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Lauran Madden ◽  
Mark Juhas ◽  
William E Kraus ◽  
George A Truskey ◽  
Nenad Bursac

Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7+ cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.

2021 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Divya Gupta ◽  
Jeffrey W. Santoso ◽  
Megan L. McCain

Engineered in vitro models of skeletal muscle are essential for efficiently screening drug safety and efficacy. However, conventional culture substrates poorly replicate physical features of native muscle and do not support long-term culture, which limits tissue maturity. Micromolded gelatin hydrogels cross-linked with microbial transglutaminase (gelatin-MTG hydrogels) have previously been shown to induce C21C2 myotube alignment and improve culture longevity. However, several properties of gelatin-MTG hydrogels have not been systematically characterized, such as changes in elastic modulus during incubation in culture-like conditions and their ability to support sarcomere maturation. In this study, various gelatin-MTG hydrogels were fabricated and incubated in ambient or culture-like conditions. Elastic modulus, mass, and transmittance were measured over a one- or two-week period. Compared to hydrogels in phosphate buffered saline (PBS) or ambient air, hydrogels in Dulbecco’s Modified Eagle Medium (DMEM) and 5% CO2 demonstrated the most stable elastic modulus. A subset of gelatin-MTG hydrogels was micromolded and seeded with C2C12 or primary chick myoblasts, which aligned and fused into multinucleated myotubes with relatively mature sarcomeres. These data are important for fabricating gelatin-MTG hydrogels with predictable and stable mechanical properties and highlight their advantages as culture substrates for engineering relatively mature and stable muscle tissues.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Frederic Dessauge ◽  
Cindy Schleder ◽  
Marie-Hélène Perruchot ◽  
Karl Rouger

AbstractTypical two-dimensional (2D) culture models of skeletal muscle-derived cells cannot fully recapitulate the organization and function of living muscle tissues, restricting their usefulness in in-depth physiological studies. The development of functional 3D culture models offers a major opportunity to mimic the living tissues and to model muscle diseases. In this respect, this new type of in vitro model significantly increases our understanding of the involvement of the different cell types present in the formation of skeletal muscle and their interactions, as well as the modalities of response of a pathological muscle to new therapies. This second point could lead to the identification of effective treatments. Here, we report the significant progresses that have been made the last years to engineer muscle tissue-like structures, providing useful tools to investigate the behavior of resident cells. Specifically, we interest in the development of myopshere- and myobundle-based systems as well as the bioprinting constructs. The electrical/mechanical stimulation protocols and the co-culture systems developed to improve tissue maturation process and functionalities are presented. The formation of these biomimetic engineered muscle tissues represents a new platform to study skeletal muscle function and spatial organization in large number of physiological and pathological contexts.


2021 ◽  
Vol 22 (14) ◽  
pp. 7282
Author(s):  
Cecilia Romagnoli ◽  
Preeti Sharma ◽  
Roberto Zonefrati ◽  
Gaia Palmini ◽  
Elena Lucattelli ◽  
...  

Skeletal muscle has an outstanding capacity for regeneration in response to injuries, but there are disorders in which this process is seriously impaired, such as sarcopenia. Pharmacological treatments to restore muscle trophism are not available, therefore, the identification of suitable therapeutic targets that could be useful for the treatment of skeletal reduced myogenesis is highly desirable. In this in vitro study, we explored the expression and function of the calcium-sensing receptor (CaSR) in human skeletal muscle tissues and their derived satellite cells. The results obtained from analyses with various techniques of gene and protein CaSR expression and of its secondary messengers in response to calcium (Ca2+) and CaSR drugs have demonstrated that this receptor is not present in human skeletal muscle tissues, neither in the established satellite cells, nor during in vitro myogenic differentiation. Taken together, our data suggest that, although CaSR is a very important drug target in physiology and pathology, this receptor probably does not have any physiological role in skeletal muscle in normal conditions.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (20) ◽  
pp. 3447-3461 ◽  
Author(s):  
Gaurav Agrawal ◽  
Aereas Aung ◽  
Shyni Varghese

We introduce a microfluidic platform in which we culture three-dimensional skeletal muscle tissues, while evaluating tissue formation and toxin-induced muscle injury.


2007 ◽  
Vol 27 (2_suppl) ◽  
pp. 110-115 ◽  
Author(s):  
Susan Yung ◽  
Chan Tak Mao

♦ Background The introduction of peritoneal dialysis (PD) as a modality of renal replacement therapy has provoked much interest in the biology of the peritoneal mesothelial cell. Mesothelial cells isolated from omental tissue have immunohistochemical markers that are identical to those of mesothelial stem cells, and omental mesothelial cells can be cultivated in vitro to study changes to their biologic functions in the setting of PD. ♦ Method The present article describes the structure and function of mesothelial cells in the normal peritoneum and details the morphologic changes that occur after the introduction of PD. Furthermore, this article reviews the literature of mesothelial cell culture and the limitations of in vitro studies. ♦ Results The mesothelium is now considered to be a dynamic membrane that plays a pivotal role in the homeostasis of the peritoneal cavity, contributing to the control of fluid and solute transport, inflammation, and wound healing. These functional properties of the mesothelium are compromised in the setting of PD. Cultures of peritoneal mesothelial cells from omental tissue provide a relevant in vitro model that allows researchers to assess specific molecular pathways of disease in a distinct population of cells. Structural and functional attributes of mesothelial cells are discussed in relation to long-term culture, proliferation potential, age of tissue donor, use of human or animal in vitro models, and how the foregoing factors may influence in vitro data. ♦ Conclusions The ability to propagate mesothelial cells in culture has resulted, over the past two decades, in an explosion of mesothelial cell research pertaining to PD and peritoneal disorders. Independent researchers have highlighted the potential use of mesothelial cells as targets for gene therapy or transplantation in the search to provide therapeutic strategies for the preservation of the mesothelium during chemical or bacterial injury.


2021 ◽  
Author(s):  
Marine A Krzisch ◽  
Hao A Wu ◽  
Bingbing Yuan ◽  
Troy W. Whitfield ◽  
X. Shawn Liu ◽  
...  

Abnormal neuronal development in Fragile X syndrome (FXS) is poorly understood. Data on FXS patients remain scarce and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. Here, we co-injected neural precursor cells (NPCs) from FXS patient-derived and corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Single-cell RNA sequencing of transplanted cells revealed upregulated excitatory synaptic transmission and neuronal differentiation pathways in FXS neurons. Immunofluorescence analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, increased percentages of Arc- and Egr1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons pointed to an increase in synaptic activity and synaptic strength as compared to control. This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3D context, and could be used to test new therapeutic compounds correcting neuronal development defects in FXS.


2018 ◽  
Vol 23 (8) ◽  
pp. 790-806 ◽  
Author(s):  
Joanne Young ◽  
Yoran Margaron ◽  
Mathieu Fernandes ◽  
Eve Duchemin-Pelletier ◽  
Joris Michaud ◽  
...  

Despite the need for more effective drug treatments to address muscle atrophy and disease, physiologically accurate in vitro screening models and higher information content preclinical assays that aid in the discovery and development of novel therapies are lacking. To this end, MyoScreen was developed: a robust and versatile high-throughput high-content screening (HT/HCS) platform that integrates a physiologically and pharmacologically relevant micropatterned human primary skeletal muscle model with a panel of pertinent phenotypic and functional assays. MyoScreen myotubes form aligned, striated myofibers, and they show nerve-independent accumulation of acetylcholine receptors (AChRs), excitation–contraction coupling (ECC) properties characteristic of adult skeletal muscle and contraction in response to chemical stimulation. Reproducibility and sensitivity of the fully automated MyoScreen platform are highlighted in assays that quantitatively measure myogenesis, hypertrophy and atrophy, AChR clusterization, and intracellular calcium release dynamics, as well as integrating contractility data. A primary screen of 2560 compounds to identify stimulators of myofiber regeneration and repair, followed by further biological characterization of two hits, validates MyoScreen for the discovery and testing of novel therapeutics. MyoScreen is an improvement of current in vitro muscle models, enabling a more predictive screening strategy for preclinical selection of the most efficacious new chemical entities earlier in the discovery pipeline process.


2019 ◽  
Vol 20 (18) ◽  
pp. 4647 ◽  
Author(s):  
Bart Kramer ◽  
Luuk de Haan ◽  
Marjolein Vermeer ◽  
Thomas Olivier ◽  
Thomas Hankemeier ◽  
...  

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers due to a high chemoresistance and poor vascularization, which results in an ineffective systemic therapy. PDAC is characterized by a high intratumoral pressure, which is not captured by current 2D and 3D in vitro models. Here, we demonstrated a 3D microfluidic interstitial flow model to mimic the intratumoral pressure in PDAC. We found that subjecting the S2-028 PDAC cell line to interstitial flow inhibits the proliferation, while maintaining a high viability. We observed increased gemcitabine chemoresistance, with an almost nine-fold higher EC50 as compared to a monolayer culture (31 nM versus 277 nM), and an alleviated expression and function of the multidrug resistance protein (MRP) family. In conclusion, we developed a 3D cell culture modality for studying intratissue pressure and flow that exhibits more predictive capabilities than conventional 2D cell culture and is less time-consuming, and more scalable and accessible than animal models. This increase in microphysiological relevance might support improved efficiency in the drug development pipeline.


2020 ◽  
Vol 21 (9) ◽  
pp. 3302
Author(s):  
Małgorzata Zimowska ◽  
Karolina Archacka ◽  
Edyta Brzoska ◽  
Joanna Bem ◽  
Areta M. Czerwinska ◽  
...  

Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the regeneration of rat skeletal muscles. We compared their effect at properly regenerating fast-twitch EDL and poorly regenerating slow-twitch soleus. To this end, ADSCs subjected to IL-4 and SDF-1 were analyzed in vitro and also in vivo after their transplantation into injured muscles. We tested their proliferation rate, migration, expression of stem cell markers and myogenic factors, their ability to fuse with myoblasts, as well as their impact on the mass, structure and function of regenerating muscles. As a result, we showed that cytokine-pretreated ADSCs had a beneficial effect in the regeneration process. Their presence resulted in improved muscle structure and function, as well as decreased fibrosis development and a modulated immune response.


Sign in / Sign up

Export Citation Format

Share Document