scholarly journals DFT calculation and assignment of vibrational spectra of aryl and alkyl chlorophosphates

2014 ◽  
Vol 12 (2) ◽  
pp. 153-163
Author(s):  
Viktor Anishchenko ◽  
Vladimir Rybachenko ◽  
Konstantin Chotiy ◽  
Andrey Redko

AbstractDFT calculations of vibrational spectra of chlorophosphates using wide range of basis sets and hybrid functionals were performed. Good agreement between calculated and experimental vibrational spectra was reached by the combination of non-empirical functional PBE0 with both middle and large basis sets. The frequencies of the stretching vibrations of the phosphate group calculated using semi-empirical functional B3LYP for all basis sets deviate significantly from the experimental values. The number of polarization functions on heavy atoms was shown to be a key factor for the calculation of vibrational frequencies of organophosphates. The importance of consideration of all the stable rotamers for a complete assignment of fundamental modes was shown.

2018 ◽  
Vol 23 (2) ◽  
pp. 241-266 ◽  
Author(s):  
Ximena Verónica Jaramillo-Fierro ◽  
César Zambrano ◽  
Francisco Fernández ◽  
Regino Saenz-Puche ◽  
César Costa ◽  
...  

A new Cu(I) complex constructed by reaction of trithiocyanuric acid (ttc) and copper (II) perchlorate hexahydrate has been successfully synthesized by a slow sedimentation method in a DMF solvent at room temperature. The molecular structure of the compound was elucidated by MALDI-TOFMS, UV Vis and FTIR spectroscopy, DSC-TGA analysis and magnetic susceptibility measurement. The proposed structure was corroborated by a computational study carried out with the Gaussian09 and AIMAII programs using the RB3LYP hybrid DFT functional with both 6-31G and Alhrich-TZV basis sets. The calculated vibrational frequencies values were compared with experimental FTIR values. Photophysical properties of the synthesized complex were evaluated by UV-Visible spectroscopy and compared with computed vertical excitation obtained from TDDFT. The theoretical vibrational frequencies and the UV Vis spectra are in good agreement with the experimental values. Additionally, the Frontier Molecular Orbitals (HOMO-LUMO) and the Molecular Electrostatic Potential of the complex was calculated using same theoretical approximation. The results showed the interaction between three coordinatedl igand atoms and the Cu(I) ion.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Anoop kumar Pandey ◽  
Abhishek Bajpai ◽  
Vikas Baboo ◽  
Apoorva Dwivedi

Isoniazid (Laniazid, Nydrazid), also known as isonicotinylhydrazine (INH), is an organic compound that is the first-line medication in prevention and treatment of tuberculosis. The optimized geometry of the isoniazid and its derivative N-cyclopentylidenepyridine-4-carbohydrazide molecule has been determined by the method of density functional theory (DFT). For both geometry and total energy, it has been combined with B3LYP functionals having LANL2DZ and 6-311 G (d, p) as the basis sets. Using this optimized structure, we have calculated the infrared wavenumbers and compared them with the experimental data. The calculated wavenumbers by LANL2DZ are in an excellent agreement with the experimental values. On the basis of fully optimized ground-state structure, TDDFT//B3LYP/LANL2DZ calculations have been used to determine the low-lying excited states of isoniazid and its derivative. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of isoniazid and its derivative. A complete assignment is provided for the observed FTIR spectra. The molecular HOMO, LUMO composition, their respective energy gaps, and MESP contours/surfaces have also been drawn to explain the activity of isoniazid and its derivative.


1999 ◽  
Vol 383 ◽  
pp. 307-326 ◽  
Author(s):  
CHRISTOPHE CLANET ◽  
JUAN C. LASHERAS

We consider the critical Weber number (Wec≡ ρV20D/σ) at which the transition from dripping to jetting occurs when a Newtonian liquid of density ρ and surface tension σ is injected with a velocity V0 through a tube of diameter D downward into stagnant air, under gravity g. We extend Taylor's (1959) model for the recession speed of a free edge, and obtain in the inviscid limit an exact solution which includes gravity and inertia effects. This solution provides a criterion for the transition which is shown to occur at a critical Weber numberformula herewhere Bo and Boo are the Bond numbers (Bo≡[ρgD2/(2σ)]1/2), respectively based on the inside and outside diameter of the tube, and K is a constant equal to 0.37 for the case of water injected in air. This critical Weber number is shown to be in good agreement with existing experimental values as well as with new measurements performed over a wide range of Bond numbers.


2014 ◽  
Vol 614 ◽  
pp. 65-69
Author(s):  
Yan Fei Wang ◽  
Yu Xiang Zhu ◽  
Xiao Yu Zhao ◽  
Shi Jie Xu ◽  
Lin Shan Hu ◽  
...  

Using a laser monitoring observation technique, the solubility of fructose diphosphate sodium in binary solvent of ethanol + water mixtures was experimentally measured in the temperature ranging from 298.15 K to 333.15 K at atmospheric pressure. The solubility of fructose diphosphate sodium increased with an increase of temperature and quality percentage of water. Experimental solubility data were correlated with semi-empirical models; and the calculated solubilities of fructose diphosphate sodium show good agreement with the experimental values.


2017 ◽  
Vol 231 (11-12) ◽  
Author(s):  
Humbul Suleman ◽  
Abdulhalim Shah Maulud ◽  
Zakaria Man

AbstractA computationally simple thermodynamic framework has been presented to correlate the vapour-liquid equilibria of carbon dioxide absorption in five representative types of alkanolamine mixtures. The proposed model is an extension of modified Kent Eisenberg model for the carbon dioxide loaded aqueous alkanolamine mixtures. The model parameters are regressed on a large experimental data pool of carbon dioxide solubility in aqueous alkanolamine mixtures. The model is applicable to a wide range of temperature (298–393 K), pressure (0.1–6000 kPa) and alkanolamine concentration (0.3–5 M). The correlated results are compared to the experimental values and found to be in good agreement with the average deviations ranging between 6% and 20%. The model results are comparable to other thermodynamic models.


1982 ◽  
Vol 104 (2) ◽  
pp. 121-129
Author(s):  
A. Hanafi ◽  
G. A. Karim

The physical and chemical processes that occur typically within and around an oil sand fragment are considered when the fragment is suddenly introduced into a hot, low-uniform velocity, gaseous oxidizing stream. In this analytical study, the extent of bitumen volatilization was obtained from a consideration of the simultaneous heat and mass transfer within spherical oil sand fragments combined with a simplified cracking scheme of the heavy oil and asphaltene into coke and distillate. The resulting system of equations together with the boundary conditions arising from subjecting the fragments to hot convective streams were solved using Laplace transformation. The transient concentrations of bitumen and temperature within the fragments were then obtained under a wide range of operating conditions. The similarity of the expression obtained for the extent of bitumen volatilization to the expression derived from simplified analysis, based on a dropletlike model, was demonstrated for cases where the transient effects within the fragments were considered to be negligible. The results of the theoretical analysis show relatively good agreement with their corresponding experimental values at high stream temperatures, while they showed relatively inferior agreement at low temperatures.


1998 ◽  
Vol 54 (5) ◽  
pp. 515-523 ◽  
Author(s):  
T. Pilati ◽  
F. Demartin ◽  
C. M. Gramaccioli

Using crystallographic information and empirical potentials derived from fitting the vibrational frequencies of all the substances under study, together with those of a group of silicates and oxides, a Born–von Karman rigid-ion lattice-dynamical model has been applied to the whole Brillouin zone in calcite, aragonite (α- and β-CaCO3, respectively), magnesite (MgCO3) and dolomite [CaMg(CO3)2]. The Raman and IR spectra are satisfactorily reproduced and interpreted by these calculations; there is also very good agreement with atomic anisotropic displacement parameters (a.d.p.'s) derived from accurate crystal structure refinement by various authors and with the experimental values of thermodynamic functions over a wide range of temperatures. On these vibrational grounds, the stability of calcite with respect to aragonite at high temperature can be accounted for.


1995 ◽  
Vol 117 (3) ◽  
pp. 239-242 ◽  
Author(s):  
S. O. Bade Shrestha ◽  
I. Wierzba ◽  
G. A. Karim

A simple approach is described for the calculation of the rich flammability limits of fuel-diluent mixtures in air for a wide range of initial temperatures based only on the knowledge of the flammability limit of the pure fuel in air at atmospheric temperature and pressure conditions. Various fuel-diluent mixtures that include the fuels methane, ethylene, ethane, propane, butane, carbon monoxide, and hydrogen, and the diluents nitrogen, carbon dioxide, helium, and argon have been considered. Good agreement is shown to exist between predicted values of the rich flammability limits and the corresponding available experimental values for the fuel-diluent mixtures.


2015 ◽  
Vol 8 (2) ◽  
pp. 203-216
Author(s):  
Anton Gatial ◽  
Viktor Milata ◽  
Nadežda Prónayová ◽  
Klaus Herzog ◽  
Reiner Salzer

Abstract The IR (4000-400 cm-1) and Raman (4000-50 cm-1) spectra of 3-methoxymethylene-2,4-pentanedione [H3C-O-CH=C(COCH3)2] as a liquid and solutes in various solvents of different polarity have been recorded at ambient temperature. Additional IR and Raman spectra were obtained for amorphous and crystalline solid state at low temperature. The vibrational spectra revealed that the compound exists at least in two dominant conformers of different polarity and that the conformer present in the solid phase is less polar. NMR spectra in various solvents at different temperatures were also obtained. The compound can exist in several conformers due to the rotation around O-C= and both =C-C bonds with planar or nonplanar arrangements of heavy atoms. Ab initio MP2 and DFT calculations using a wide scale of basis sets were carried out. According to these calculations six conformational structures of the eight theoretically possible conformational structures with the methoxy group oriented as anti or syn and carbonyl groups oriented as Z or E towards the C=C double bond were obtained at potential energy surface. It has been shown that the conformers with the E orientations of both acetyl groups are not the stable ones. The calculated ab initio MP2 and DFT energies of all found conformers in vacuum suggest the most stable ZEa conformer where Z and E regard to the trans and cis acetyl groups, respectively and a denotes the orientation of the methoxy group. The EZa conformer was calculated as the second most stable one with the energy by at least 10 kJ mol-1 higher. Corrections of the relative energies of single conformers obtained in vacuum on the polar surroundings were done by including the solvent effect into the calculations using IEF Polarizable Continuum Model. Assignments of the vibrational spectra for the studied compound were made with the aid of normal coordinate calculations employing scaled ab initio force field. The scaled ab initio frequencies as well as calculated energies indicate that ZEa is the conformer present in the solid phase.


1994 ◽  
Vol 116 (3) ◽  
pp. 181-185 ◽  
Author(s):  
I. Wierzba ◽  
S. O. Bade Shrestha ◽  
G. A. Karim

A procedure is described for calculating the lean flammability limits of fuel-diluent mixtures in air over a wide range of fuel-diluent combinations and for different initial mixture temperatures. Good agreement is shown to exist between the predicted values of the limits with the corresponding experimental values for some common gaseous fuels that include CH4, C2H6, C2H4, C3H8, C4H10, H2, and CO and the diluents CO2, N2, He, and Ar over the temperature range of −60°C up to 400°C.


Sign in / Sign up

Export Citation Format

Share Document