scholarly journals Láser en odontología: fundamentos físicos y biológicos / Laser in Dentistry: Physical and Biological Foundations

2017 ◽  
Vol 35 (75) ◽  
Author(s):  
Jhon Fredy Briceño Castellanos ◽  
Diego Alejandro Gaviria Beitia ◽  
Yurani Angélica Carranza Rodríguez

RESUMEN. Antecedentes: El láser es una tecnología cada vez más utilizada en Odontología. Para tomar decisiones acertadas con respecto a las características y uso del láser es importante conocer sus bases físicas y biológicas en cuanto a su interacción con los tejidos. Objetivo: Analizar los fundamentos biológicos y físicos del láser en odontología. Métodos: Se realizó una revisión narrativa con base en literatura publicada entre 1990 y 2016 e incluida en el Medline. La muestra consistió en 30 artículos. Para el análisis se empleó un enfoque hermenéutico. Resultados: Los fundamentos físicos analizados incluyen luz, amplificación, emisión estimulada y radiación. En cuanto a los efectos biológicos se analizan el fototérmico, fotoquímico y fotoacústico. Asimismo, se describen las propiedades ópticas de los tejidos orales:  absorción, penetración y longitud de extinción. Conclusiones: No todos los láseres actúan igual y una misma longitud de onda puede tener interacciones diferenciales en los tejidos. Existen varios estudios que evidencian la efectividad del láser en varias especialidades de la odontología y abren la posibilidad de varias líneas de investigación.ABSTRACT. Background: Laser technology usage is increasing in dentistry. In order to take adequate decisions about characteristics and use, it is important to know the physical and biological foundations of laser and its interaction with oral tissues. Objective: To analyze the physical and biological foundations of laser in dentistry. Methods: A narrative review of literature published between 1990 and 2016 and included in Medline was carried out. The sample consisted of 30 articles. Analysis of literature was performed through a hermeneutical approach Results: Physical foundations of laser analyzed include light, amplification, stimulated emission, and radiation. Biological effects studied are photothermal, photochemical, and photoacoustic. In addition, optical properties of oral tissues are described: absorption, penetration, and extinction length. Conclusion: Not all lasers act the same way and the same wave length can interact differently with tissues. Several studies show evidence of the effectiveness of laser in several dental specialties and open the possibility for several lines of research. 

2017 ◽  
Vol 2 (t1) ◽  
Author(s):  
Christofer Tzermias ◽  
Areti Eleftheriadi ◽  
Ioulia Gkiouzepaki

<p>One of the most widely used cutaneous applications of Light Amplification by Stimulated Emission of Radiation (laser) concerns the treatment of vascular lesions. During the past two decades, very significant advances in the application of laser technology in dermatology have occurred, with selective photothermolysis being the most important. This review focuses on the application of modern laser devices (Pulsed Dye Laser, or PDL; potassium titanyl phosphate laser, or KTP; diode laser; and neodymium-doped yttrium-aluminium-garnet laser, or Nd:YAG), as well as the combination of laser and photodynamic therapy (PDT) for the treatment of vascular lesions. In particular, both congenital (haemangiomas and port-wine stains) and acquired vascular lesions (facial and leg telangiectasias, rosacea, Poikiloderma of Civatte, spider angioma, pyogenic granuloma, and venous lakes) are discussed. The review of many recent research studies demonstrates that modern applications of lasers in dermatology constitute the finest method for the treatment of vascular lesions, combining the advantages of invasive therapy with the security offered by non-invasive therapy, while in certain cases they are the single and only choice for the treatment of these lesions.</p>


2018 ◽  
Vol 20 (3) ◽  
pp. 51-59
Author(s):  
Miguel A. Rosales B. M.E. ◽  
Gabriela Torre D.M.E.P. ◽  
Lydia H. Saavedra Ch. C.D. ◽  
Raúl Márquez P. MEP ◽  
Ma. del Socorro Ruiz R. M.I.C. ◽  
...  

The term "LASER" is an acronym for "Light Amplification by the Stimulated Emission of Radiation" (in Spanish "Amplificación de Luz por Emisión Estimulada de Radiación"). The use of laser technology in dentistry has had a constant evolution and development in the last 30 years. Two large groups of lasers should be distinguished: high-power or surgical and low-power or therapeutic. The most used in pediatric dentistry is the therapeutic or LLLT (or "soft"). The therapeutic laser is indicated for various anomalies such as hypersensitivity, gingivitis, herpes, paresthesias, trigeminal neuralgias, trismus, TMJ dysfunction, implants, activation of teeth whitening chemicals, among others. This article intends to perform an update of the applications of low power laser in the field of Pediatric Dentistry, as well as the presentation of 4 representative clinical cases.


2016 ◽  
Vol 20 (3) ◽  
pp. 131-137 ◽  
Author(s):  
Theodoros Tachmatzidis ◽  
Nikolaos Dabarakis

SummaryThe word “Laser” is an acronym for “Light Amplification by Stimulated Emission of Radiation”. Recent advances in laser technology have brought a kind of revolution in dentistry. The purpose of this article is to provide an overview of clinical application of lasers in oral medicine and especially in oral surgery, including their advantages, disadvantages and safety.


2011 ◽  
Author(s):  
Taiichi Otsuji ◽  
Stephane A. Boubanga Tombet ◽  
Silvia Chan ◽  
Akira Satou ◽  
Victor Ryzhii

1991 ◽  
Vol 228 ◽  
Author(s):  
H. Luo ◽  
N. Samarth ◽  
J. K. Furdyna ◽  
H. Jeon ◽  
J. Ding ◽  
...  

ABSTRACTSuperlattices and quantum wells of Znl-xCdxSe/ZnSe, and heterostructures based on ZnSe/CdSe digital alloys have been grown by molecular beam epitaxy (MBE). Their optical properties were studied with particular emphasis on excitonic absorption and photopumped stimulated emission. Excitonic absorption is easily observable up to 400 K, and is characterized by extremely large absorption coefficients (α = 2×105cm−1). Optically pumped lasing action is obtained at room temperature with a typical threshold intensity of 100 kW/cm2. The lasing mechanism in these II-VI quantum wells appears to be quite different from that in the better studied III-V materials: in our case, the onset of stimulated emission occurs before the saturation of the excitonic absorption, and the stimulated emission occurs at an energy lower than that of the excitonic absorption.


2018 ◽  
Vol 85 (2) ◽  
pp. 267-273
Author(s):  
I. E. Svitsiankou ◽  
V. N. Pavlovskii ◽  
E. V. Lutsenko ◽  
G. P. Yablonskii ◽  
A. V. Mudryi ◽  
...  

Author(s):  
Stephane Boubanga-Tombet ◽  
Deepika Yadav ◽  
Takayuki Watanabe ◽  
Akira Satou ◽  
Wojciech Knap ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document