Anisotropy Effect on Ductile Crack Growth of Pressurized Pipes Under Fully Bending Moment

2021 ◽  
Author(s):  
Muhammet Cuneyt Sakonder ◽  
Marcelo Paredes
Author(s):  
Do-Jun Shim ◽  
Mohammed Uddin ◽  
Frederick Brust ◽  
Gery Wilkowski

Cohesive zone modeling has been shown to be a convenient and effective method to simulate and analyze the ductile crack growth behavior in fracture specimens and structures. However, the cohesive zone modeling has not been applied to simulate the ductile crack growth behavior of a circumferential through-wall cracked pipe. In this paper, cohesive zone modeling has been applied to simulate the ductile crack growth of a past through-wall-cracked pipe test that was conducted during Degraded Piping Program. The ABAQUS code was used for the three-dimensional finite element analysis. The bending moment at crack initiation, maximum bending moment, crack extension, and J-integral values were calculated from the finite element analysis. These results were compared with the experimental results. In addition, results obtained from an existing J-estimation scheme (LBB.ENG2) were provided for comparison. All results showed reasonable agreement. The results of the present study demonstrate that the cohesive zone modeling can be applied to simulate the ductile crack growth behavior of a through-wall cracked pipe.


Author(s):  
Jong-Hyun Kim ◽  
Nak-Hyun Kim ◽  
Yun-Jae Kim ◽  
Do-Jun Shim

This paper proposes an element-size-dependent damage model to simulate ductile crack growth in full-scale cracked pipes. The proposed method is based on the stress-modified fracture strain damage model modified from stress reduction technique proposed previously by the authors. A modification is made that the critical accumulated damage for progressive cracking is assumed to be dependent on the element size. The proposed method is then compared with a circumferential through-wall cracked pipe test that was conducted during Degrade Piping Program[18]. The bending moment at crack initiation, maximum bending moment, crack extension, and J-integral values were calculated from the FE damage analysis. These results were compared with the experimental results. In addition, results obtained from an existing J-estimation scheme were provided for comparison. All results showed reasonable agreement. The results of the present study demonstrate that the element-size-dependent damage modeling can be applied to simulate the ductile crack growth behavior of a through-wall cracked pipe.


Author(s):  
Satoshi Igi ◽  
Mitsuru Ohata ◽  
Takahiro Sakimoto ◽  
Kenji Oi ◽  
Joe Kondo

This paper presents experimental and analytical results focusing on the strain limit of X80 linepipe. Ductile crack growth behavior from a girth weld notch is simulated by FE analysis based on a proposed damage model and is compared with the experimental results. The simulation model for ductile crack growth accompanied by penetration through the wall thickness consists of two criteria. One is a criterion for ductile crack initiation from the notch-tip, which is described by the plastic strain at the notch tip, because the onset of ductile cracking can be expressed by constant plastic strain independent of the shape and size of the components and the loading mode. The other is a damage-based criterion for simulating ductile crack extension associated with damage evolution influenced by plastic strain in accordance with the stress triaxiality ahead of the extending crack tip. The proposed simulation model is applicable to prediction of ductile crack growth behaviors from a circumferentially-notched girth welded pipe with high internal pressure, which is subjected to tensile loading or bending (post-buckling) deformation.


Author(s):  
Takehisa Yamada ◽  
Mitsuru Ohata

Abstract The aim of this study is to propose damage model on the basis of the mechanism for ductile fracture related to void growth and to confirm the applicability of the proposed model to ductile crack growth simulation for steel. To figure out void growth behavior, elasto-plastic finite element analyses using unit cell model with an initial void were methodically performed. From the results of those analyses, it was evident that the relationships between normalized void volume fraction and normalized strain by each critical value corresponding to crack initiation were independent of stress-strain relationship of material and stress triaxiality state. Based on this characteristic associated with void growth, damage evolution law was derived. Then, using the damage evolution law, simple and phenomenological ductile damage model reflecting void growth behavior and ductility of material was proposed. To confirm the validation and application of proposed damage model, the damage model was implemented in finite element models and ductile crack growth resistance was simulated for cracked components were performed. Then, the simulated results were compared with experimental ones and it was found that the proposed damage model could accurately predict ductile crack growth resistance and was applicable to ductile crack growth simulation.


Author(s):  
Sai Deepak Namburu ◽  
Lakshmana Rao Chebolu ◽  
A. Krishnan Subramanian ◽  
Raghu Prakash ◽  
Sasikala Gomathy

Welding residual stress is one of the main concerns in the process of fabrication and operation because of failures in welded steel joints due to its potential effect on structural integrity. This work focuses on the effect of welding residual stress on the ductile crack growth behavior in AISI 316LN welded CT specimens. Two-dimensional plane strain model has been used to simulate the CT specimen. X-ray diffraction technique is used to obtain residual stress value at the SS 316LN weld joint. The GTN model has been employed to estimate the ductile crack growth behavior in the CT-specimen. Results show that residual stresses influence the ductile crack growth behavior. The effect of residual stress has also been investigated for cases with different initial void volume fraction, crack lengths.


Author(s):  
Kiminobu Hojo ◽  
Daigo Watanabe ◽  
Shinichi Kawabata ◽  
Yasufumi Ametani

A lot of applications of elastic plastic FE analysis to flawed structural fracture behaviors of mode I have been investigated. On the other hand the analysis method has not been established for the case of the excessive cyclic torsion loading with mode II or III fracture. The authors tried simulating the fracture behavior of a cylinder-shaped specimen with a through-walled circumferential flaw subjected to excessive monotonic or cyclic loading by using elastic plastic FE analysis. Chaboche constitutive equation of the used FE code Abaqus was applied to estimate the elastic plastic cyclic behavior. As a result in the case of monotonic loading without crack extension, the relation of torque-rotation angle of the experiment was estimated well by the simulation. Also J-integral by the Abaqus’ function agreed with a simplified J-equation using the calculated torque-rotation angle relation. On the other hand under load controlled cyclic loading associated with ductile crack growth, the calculated torque-rotation angle relation did not agree with the experimental one because of high sensitivity of the used stress-strain curve. J-integral from Abaqus code did not increase regardless of the accumulated crack growth and plastic zone. Several simplified ΔJ calculations tried to explain the experimental ductile crack growth and it seemed that da/dN-ΔJ relation follows the Paris’ law. From these examinations an estimation procedure of the structures under excessive cyclic loading was proposed.


Sign in / Sign up

Export Citation Format

Share Document