Results From Environmentally-Assisted Short Crack Fatigue Testing on Austenitic Stainless Steels

2021 ◽  
Author(s):  
Ben Coult ◽  
Adam Griffiths ◽  
Jack Beswick ◽  
Peter Gill ◽  
Norman Platts ◽  
...  
1982 ◽  
Vol 10 (3) ◽  
pp. 115
Author(s):  
R Horstman ◽  
KA Peters ◽  
RL Meltzer ◽  
M Bruce Vieth ◽  
MJ Manjoine ◽  
...  

Author(s):  
T. P. Métais ◽  
G. Stevens ◽  
G. Blatman ◽  
J. C. Le Roux ◽  
R. L. Tregoning

Revised fatigue curves for austenitic stainless steels are currently being considered by several organizations in various countries, including Japan, South Korea, and France. The data available from laboratory tests indicate that the mean air curve considering all available austenitic material fatigue data may be overly conservative compared to a mean curve constructed from only those data representative of a particular type of material. In other words, developing separate fatigue curves for each of the different types of austenitic materials may prove useful in terms of removing excess conservatism in the estimation of fatigue lives. In practice, the fatigue curves of interest are documented in the various international design codes. For example, in the 2009 Addenda of Section III of the ASME Boiler and Pressure Vessel (BPV) Code [1], a revised design air fatigue curve for austenitic materials was implemented that was based on NRC research models [2]. More recently, in Japan, various industrial groups have joined their efforts to create the Design Fatigue Curve Sub-committee (DCFS) with the objective to reassess the fatigue curves [3]. In France, EDF/AREVA and CEA are developing a new fatigue curve for austenitic stainless steels [4]. More specifically, in 2014, EDF presented a paper on high-cycle fatigue analysis which demonstrated that the factor on the strain amplitude could be reduced from 2 to 1.4 for the RCC-M austenitic stainless steel grades [5]. Recently, discussions between EDF and the U.S. Nuclear Regulatory Commission (NRC) have led both parties to recognize that there is a need to exchange worldwide research data from fatigue testing to promote a common, vetted database available to all researchers. These discussions have led EDF and NRC to pursue a collaborative agreement and associated fatigue data exchange, with the intent to assemble all available fatigue data for austenitic materials into a standardized format. The longer term objective is to perform common analyses on the consolidated set of data. This paper summarizes the intent and of the preliminary results of this cooperation and also provides insights from both organizations on possible future activities and participation in the global exchange of fatigue research data.


2007 ◽  
Vol 345-346 ◽  
pp. 235-238 ◽  
Author(s):  
Masaki Nakajima ◽  
Jae Woong Jung ◽  
Yoshihiko Uematsu ◽  
Keiro Tokaji

The effects of prestrain and strength level on the coaxing behavior were studied in austenitic stainless steels and high strength steels, respectively. The materials used were austenitic stainless steels, SUS304 and SUS316, and high strength steels, SCM435, SNCM439 and SUJ2. Stress incremental fatigue tests were performed using cantilever-type rotating bending fatigue testing machines. It was found that the steels except for SUJ2 showed a marked coaxing effect. Non-propagating cracks were not detected in all the steels examined. Based on hardness test, X-ray diffraction measurement and EBSD analysis, it was indicated that the coaxing effect occurred due to work hardening and strain-induced martensite transformation in austenitic stainless steels and to strain-aging in high strength steels.


2021 ◽  
Author(s):  
Adam Griffiths ◽  
Ben Coult ◽  
Peter Gill ◽  
Norman Platts ◽  
Jonathan Mann

Author(s):  
Ben Coult ◽  
Adam Griffiths ◽  
Jack Beswick ◽  
Peter Gill ◽  
Norman Platts ◽  
...  

Abstract The effect of environment on fatigue life is currently assessed using methods (such as NUREG/CR-6909) that may be excessively conservative when applied to plant components and loading transients. To reduce this conservatism, the ASME WG-EFEM has proposed the development of an improved assessment methodology for environmental fatigue based on a Total Life Prediction approach that would be adequately, but not excessively, conservative. Such an approach necessitates the development of analytical methods for the various stages of crack nucleation, short crack growth and long crack growth. Hence, there is a requirement to undertake testing within the short crack growth regime that would bridge the gap between fatigue nucleation and long crack growth (Paris Law) enabling better prediction of total life measured by fatigue endurance. A test methodology has been developed by Wood to enable short crack growth testing with in-situ monitoring using DCPD. Testing has been undertaken in both high temperature air (300°C) and simulated end-of-cycle primary water chemistry at 300°C on cold-worked stainless steel specimens, which were subject to a range of load ratios and rise times. FEA modelling has been undertaken to determine the effective stress intensity factors applied under the loading conditions based on the specific material properties. This paper presents the results from a testing program conducted with EPRI, to measure fatigue crack growth data for short cracks from 0.15 mm to 1.0 mm. Crack growth rates have been compared to those predicted in ASME, Code Case N-809 and results from material specific in-house testing to assist the understanding of the behaviour of mechanically short cracks.


2009 ◽  
Vol 423 ◽  
pp. 99-104
Author(s):  
Gemma Fargas ◽  
Marc Anglada ◽  
Antonio Mateo

The martensitic transformation in austenitic stainless steels can be induced by plastic deformation at room temperature. The benefit of this transformation is commonly used to strengthen stainless steels grades, i.e. their yield and tensile resistance can be adjusted according to the requirement by cold rolling. In this paper, the martensitic transformation was induced by means of torsion deformation. Several torsion angles were selected to achieve different percentages of martensite at the surface of the specimens and then the effect on the fatigue life of the steel was studied. Fatigue testing results showed dissimilar behavior depending on the stress ratio (R) applied during the test. As a conclusion, the presence of martensite in the surface increases the fatigue life for high stress ratios (R=0.8), while at low R values martensitic transformation has no positive effect.


Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


Sign in / Sign up

Export Citation Format

Share Document