The Effects of Solid-Liquid Internal Flow on the Dynamic Behavior of a Reduced-Scale Jumper for the Deep-Sea Mining

2021 ◽  
Author(s):  
Marcio Yamamoto ◽  
Tomo Fujiwara ◽  
Shigeo Kanada ◽  
Masao Ono ◽  
Satoru Takano ◽  
...  
Author(s):  
Marcio Yamamoto ◽  
Tomo Fujiwara ◽  
Shigeo Kanada ◽  
Masao Ono ◽  
Satoru Takano ◽  
...  

Abstract For the exploitation of seafloor massive sulfides, we have investigated the dynamic behavior of the jumper, a piece of flexible pipe that connects the seafloor mining tool to the subsea slurry pump. In this article, we present the results of the experiment using a 1/5 reduced-scale model of the jumper. This experiment was carried out in Deep-Sea Basin. During the experiment, a slurry fluid was conveyed throughout the jumper’s model. In addition, an oscillator generated harmonic motion on the top end of the model. In terms of instrumentation, we installed load cells on the top and bottom ends of the model and a 3D visual measurement system tracked the motion of measurement stations attached to the model. We present the experimental results measured by the 3D visual measurement system, loads cells, and differential pressure gauges in the cases where a vertically forced oscillation is imposed on the top of the jumper. In this experiment, we could observe the effects of slurry on the jumper reduced-scale model. Since the slurry has a larger density than the single liquid phase, the slurry flow changed, as expected, the static shape of the jumper compared to a jumper conveying only water. The vertical top force average and differential pressure average increase with the volume concentration of solid, while their amplitudes increase quadratically with the forced oscillation frequency.


Author(s):  
Marcio Yamamoto ◽  
Tomo Fujiwara ◽  
Shigeo Kanada ◽  
Masao Ono ◽  
Satoru Takano ◽  
...  

Abstract In the Deep-Sea Mining, the seafloor mining tool is connected to the subsea slurry pump by a piece of flexible pipe named jumper. The jumper’s shape is similar to a steep-wave flexible riser. Compared to a flexible riser, the jumper is a reinforced hose and has a shorter length. Numerous studies shed light on the dynamic behavior of flexible riser; however, all studies were carried out by the way of numerical analysis. We carried out, in the Deep-Sea Basin, an experiment using 1/5 reduced scale model of the jumper. Unhappily, the model’s bending stiffness had to be distorted. During the experiment, an oscillator generated harmonic motion on the top end of the model and a centrifugal pump circulated water throughout the model. In addition, we installed load cells on the top and bottom ends of the model. Our Basin is equipped with a visual measurement system. Thus, we measured the displacement of targets attached to the model. The initial results show that axial tension amplitude increases with the frequency of the top end oscillation. This response is due to the drag force on the lower bend increases with the frequency of top motion. We also could observe that the internal flow may increase the vertical motion amplitude. The jumper’s motion generates an oscillation on the internal differential pressure between both ends and the flow velocity. The differential pressure amplitude increases with the top oscillation frequency, but it is proportional to the top end oscillation amplitude. We will use these experimental results to validate our numerical models. Further, it is important to understand the internal flow effects to design the actual pump used to convey the slurry through the jumper.


2021 ◽  
Author(s):  
Marcio Yamamoto ◽  
Tomo Fujiwara ◽  
Joji Yamamoto ◽  
Sotaro Masanobu

Abstract One key technology for Deep-Sea Mining is the riser system. The riser is already a field-proven technology in the Petroleum Industry. However, several differences exist between a petroleum production riser and a riser for Deep-Sea Mining, mainly related to the internal flow. The ore-slurry has a larger density than the hydrocarbons and shall be pumped with a much higher flowrate. The current software tools for riser’s dynamic analysis may include the internal fluid hydrostatic pressure and the centrifugal and Coriolis forces imposed by the bent pipe’s internal flow. However, the internal pressure drop is not calculated. The internal pressure alters the pipe’s effective tension and can alter the pipe’s bending moment changing its mechanical behavior. This article describes a computational script’s development to run embedded in a commercial software for riser’s dynamic analysis. Our script calculates the internal viscous pressure drop along with the jumper. This pressure is then converted into wall axial tension (buckling) and imposed on each node of the jumper’s numerical model. Each simulation case was calculated twice with and without the internal flow viscous pressure drop. The comparison with experimental data revealed that the jumper’s average position has a good agreement among all cases. However, the amplitude caused by the top oscillation showed some discrepancies. Experimental data has the highest amplitude in the horizontal direction, while the simulation without viscous pressure calculation had the smallest. The simulation with our embedded script had intermediary amplitude in the horizontal direction. The vertical direction amplitudes have the same behavior for all cases, but the experimental data showed the highest amplitude.


Author(s):  
Marcio Yamamoto ◽  
Motohiko Murai ◽  
Shotaro Uto ◽  
Tomo Fujiwara ◽  
Shigeo Kanada ◽  
...  

The pipes are playing an important role in the offshore environment. Risers and pipelines are widely deployed by the petroleum industry for the well drilling and hydrocarbons production. Whereas during drilling, a mixture of drilling mud and solids in suspension (rock cuttings) flows through the drilling riser; during the production, mono or multiphase flow (comprising oil, water and gas) takes place within the production system. However up till now, most of investigations on offshore pipelines and risers have neglected the effects of the internal flow and have focused mainly on the interaction among pipe’s structure, hydro-dynamic forces and offshore platform’s motion. This paper deals with the interaction between the pipe structure and its internal flow. An experimental analysis was carried out, in the Deep Sea Basin of the National Maritime Research Institute (Japan), using a model of 10 m length. In this experiment, a mono-phase fluid of liquid and another bi-phase fluid of liquid and solids in suspension are used as the internal flow fluid and a parametric analysis using the internal flow rate and pipe’s oscillating frequency was carried out. Discussion about the experimental results is also included.


Author(s):  
Marcio Yamamoto ◽  
Motohiko Murai ◽  
Katsuya Maeda ◽  
Shotaro Uto

Nowadays pipes are widely deployed in the offshore environment especially in the petroleum industry where rigid and flexible pipes are used for well drilling and hydrocarbon production. Whereas during drilling, a mixture of drilling mud, rock cuttings and sometimes gas flows through the drilling riser, during production mono or multiphase (comprising oil, water and gas) flow takes place within the system. However up till now, most of the studies on offshore pipelines and risers have been focused on the pipe structure and its interaction with hydrodynamic forces and offshore platforms. In particular for numerical computation studies and reduced scale model experiments, the pipe is usually modeled as a tensioned beam and sometimes only the internal pressure is taken into account with other effects due to its internal flow being neglected. This paper deals with the interaction between the pipe structure and its internal flow. In order to verify the internal flow effects, an experimental analysis was carried out not using a reduced scale model. In particular, mono-phase fluid flows into the pipe and a parametric analysis using the flow rate was carried out. Discussion about the experimental results and numerical applications is also included.


2020 ◽  
Vol 12 (4) ◽  
pp. 168781402091611 ◽  
Author(s):  
Jari Hyvärinen ◽  
Matts Karlsson ◽  
Lin Zhou

Fatigue failure of a hydraulic hose systems, caused by violent vibrations, has become a critical factor creating operational and maintenance cost for the end user of rock drill equipment. Similar behavior is also appearing in, for example, forestry machines. Hoses are used as parts of the energy feeding system in machines such as the ones use for mining and civil construction operations. This work aims to create an understanding of the dynamic behavior of a selected hydraulic hose. The numerical modeling approach selected includes a boundary element method approach in the fluid-elastic analysis of the dynamics of a pressurized hose with conveying fluid. Experimental modal analysis was used to validate the numerical model. Pre-tension and pressure-induced tension were monitored with an in-house-developed strain gauge–based load cell. The analysis and experiments show that a complex coupling, of pure structural bending modes, appears when the hose is subjected to internal flow. Some of the modeshapes show a circular motion of the hose cross sections. As shown in this article, these coupled modes become increasingly sensitive to external or internal excitation with increasing flow rate. To illustrate the strength of the proposed approach, the second part of the work in this article presents a parametric study of hose dynamics for hoses with typical dimensions used in industrial applications. This investigation of how different parameters influence the dynamic characteristics of hydraulic hoses shows, for example, that hose end-support stiffness has a large impact on the stability and dynamic behavior of the hose. A soft support tends to create a static instability–type behavior where the lowest frequency mode frequency decreases to levels close to zero with increasing flow speed. Pre-tension of the hose has a stabilizing effect on the hose dynamics. In the case when the internal pressure of the hydraulic hose does not generate tension of the hose, then the increase or decrease in the internal pressure has limited influence on the hose dynamics: this is at least a conclusion valid in the investigated 100–210 bar pressure range. In addition, a smaller diameter hose is more sensitive than a larger diameter hose, and this is valid as long as the pre-tension is high enough to maintain static stability in the entire flow rate range.


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Joon-Hyung Kim ◽  
Him-Chan Lee ◽  
Jin-Hyuk Kim ◽  
Young-Seok Choi ◽  
Joon-Yong Yoon ◽  
...  

Multiphase pumps for offshore plants must perform at high pressure because they are installed on deep-sea floors to pressurize and transfer crude oil in oil wells. As the power for operating pumps should be supplied to deep sea floors using umbilicals, risers, and flow lines (URF), which involve a higher cost to operate pumps, the improvement of pump efficiency is strongly emphasized. In this study, a design optimization to improve the hydrodynamic performance of multiphase pumps for offshore plants was implemented. The design of experiment (DOE) techniques was used for organized design optimization. When DOE was performed, the performance of each test set was evaluated using the verified numerical analysis. In this way, the efficiency of the optimization was improved to save time and cost. The degree to which each design variable affects pump performance was evaluated using fractional factorial design, so that the design variables having a strong effect were selected based on the result. Finally, the optimized model indicating a higher performance level than the base model was generated by design optimization using the response surface method (RSM). How the performance was improved was also analyzed by comparing the internal flow fields of the base model with the optimized model. It was found that the nonuniform flow components observed on the base model were sharply suppressed in the optimized model. In addition, due to the increase of the pressure performance of the optimized model, the volume of air was reduced; therefore, the optimized model showed less energy loss than the base model.


Sign in / Sign up

Export Citation Format

Share Document