scholarly journals The effect of solid particle size and concentrations on internal flow and external characteristics of the dense fine particles solid–liquid two-phase centrifugal pump under low flow condition

AIP Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 085309
Author(s):  
Yanping Wang ◽  
Weiqin Li ◽  
Tielin He ◽  
Chuanfeng Han ◽  
Zuchao Zhu ◽  
...  
Author(s):  
Zhengjing Shen ◽  
Wei Han ◽  
Yiming Zhong ◽  
Bo Luo ◽  
Rennian Li ◽  
...  

Previous work has shown that performance and internal flow characteristics of a centrifugal pump can be significantly improved with grooved volute casing (GVC). However, it has been found that the selection of the design parameters of the groove structure also has a direct impact on the performance output, internal flow pressure pulsation and erosion wear characteristics of the overflow components of centrifugal pump, so it is necessary to further analyze the design rules of the groove structure parameters. In this study, we first investigated the influence of the number of grooves on the head, efficiency and unsteady pressure pulsation characteristics of the internal flow field of the centrifugal pump, and on this basis, the correlation between different particle parameters and the erosion wear of key overflow components under the conditions of solid–liquid two-phase flow were also studied, and the erosion wear characteristics of the inner wall of the volute casing of centrifugal pump with GVC and original volute casing (OVC) structures were compared. This research leads to the conclusion that when the number of grooves is 3, the groove structure has the least influence on the performance of the centrifugal pump, and the overall change of the performance curve is more stable. Additionally, the pressure pulsation at each monitoring point of the GVC under the same flow condition is smaller, and when the number of grooves increases, the pressure pulsation amplitude also decreases. When the number of grooves is 3, the GVC shows a more significant flow improvement effect under all flow conditions. Based on the improvement of the groove structure on the flow stability, the particle motion behavior can be affected at the same time, so that the pump with GVC can mitigate the erosion wear of the inner wall of the volute casing under the solid–liquid two-phase flow conditions, which improves the critical performance and service life of the key overflow components of the pump.


2010 ◽  
Vol 44-47 ◽  
pp. 345-348 ◽  
Author(s):  
Jian Hua Liu ◽  
Ming Yi Zhu

By Means of Fluent 6.3,the paper simulated the solid-liquid two-phase flow to a centrifugal sewerage pump,using Eulerian Mixture Model under different working condition and different particle size. The simulation draws some conclusion on distributive rules of solid particle inside impeller passage. The results for this simulation were as following: Distributive rules of solid particle inside impeller passage mainly relate to particle size. Meanwhile,the volume fraction of particles and operation condition have influence on distributive rules of solid particle. The simulated results can explain commendably that attrition took place inside pump passage when pump transported solid-liquid two-phase flow. Meanwhile,the simulated results have reference price to improve the design for pump and performance of pump.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanping Wang ◽  
Bozhou Chen ◽  
Ye Zhou ◽  
Jianfeng Ma ◽  
Xinglin Zhang ◽  
...  

To study the effect of fine particle size and volume concentration on the performance of solid-liquid two-phase centrifugal pump, the mixture multiphase flow model, RNG k-ε turbulence model, and SIMPLEC algorithm were used to simulate the two-phase flow of the centrifugal pump. The effects of particle size and volume concentration on internal pressure distribution, solid volume distribution, and external characteristics were analyzed. The results show that under the design discharge conditions, with the increase of particle size and volume concentration, the internal pressure of the flow field will decrease, and the volume fraction of solid phase in the impeller passage will also decrease as a whole. The solid particles gradually migrate from the suction surface to the pressure surface, and the particles in the volute channel are mainly concentrated in the flow channel near the outlet side of the volute. With the increase of particle size and volume concentration, the negative pressure value at the inlet of centrifugal pump increases, the total pressure difference at the inlet and outlet decreases, and the head and efficiency decrease accordingly.


2020 ◽  
pp. 2150062
Author(s):  
Yong Wang ◽  
Jie Chen ◽  
Lei Xie ◽  
Hou-Lin Liu ◽  
Kai-Kai Luo

The objective of this paper is to apply combined experimental and computational modeling to investigate the influence of different coating thickness on the operation characteristics of solid–liquid two-phase flow centrifugal pump. According to the characteristics of sediment flow in the Yellow River Basin, the effects of polyurethane coating thickness on the energy performance and pressure fluctuation are analyzed under the condition of solid–liquid two-phase flow and clean water. Meanwhile, the internal flow characteristics and radial force of the coated pump under the condition of solid–liquid two-phase flow are studied. The results show that the blade inlet and outlet of impeller are easy to wear, and the pressure fluctuation at the outlet of the model pump can be reduced by spraying proper coating thickness. The model pump with coating increases the low-speed zone of internal flow, which is mainly due to the increase of the viscous bottom layer area. The variation amplitude of radial force in sediment-laden water decreases with the increase of coating thickness.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Baocheng Shi ◽  
Jianpeng Pan ◽  
Lijuan Wu ◽  
Xingkai Zhang ◽  
Yijie Qiu ◽  
...  

Volute wall wear situations directly affect a long time safe operation for the centrifugal slurry pump unit and the whole system. In the present study, internal flow field is numerically investigated in a solid-liquid centrifugal pump, and the volute wall wear caused by the solid-liquid two-phase flow is predicted with wear equation. A systematic analysis on the wear mechanism of the centrifugal pump volute wall is carried out deeply, including the volute wall wear region, wear rate, and the relationship among inlet flow rate, particle concentration, and particle size. The predicted high erosion intensity area shows good agreement with the experimental erosion area, and the predicted and experimental areas are both located at the volute angle of 180° and near tongue. Therefore, the wear equation put forward in the present study is effective for estimating the erosion intensity and predicting the erosion area around the volute casing of a centrifugal pump.


2021 ◽  
Vol 40 (1) ◽  
pp. 178-192
Author(s):  
Wen-Qiang Ren ◽  
Lu Wang ◽  
Zheng-Liang Xue ◽  
Cheng-Zhi Li ◽  
Hang-Yu Zhu ◽  
...  

Abstract Thermodynamic analysis of the precipitation behavior, growth kinetic, and control mechanism of MnS inclusion in U75V heavy rail steel was conducted in this study. The results showed that solute element S had a much higher segregation ratio than that of Mn, and MnS would only precipitate in the solid–liquid (two-phase) regions at the late stage during the solidification process at the solid fraction of 0.9518. Increasing the cooling rate had no obvious influence on the precipitation time of MnS inclusion; however, its particle size would be decreased greatly. The results also suggested that increasing the concentration of Mn would lead to an earlier precipitation time of MnS, while it had little effect on the final particle size; as to S, it was found that increasing its concentration could not only make the precipitation time earlier but also make the particle size larger. Adding a certain amount of Ti additive could improve the mechanical properties of U75V heavy rail steel due to the formation of TiO x –MnS or MnS–TiS complex inclusions. The precipitation sequences of Ti3O5 → Ti2O3 → TiO2 → TiO → MnS → TiS for Ti treatment were determined based on the thermodynamic calculation.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yanping Wang ◽  
Chuanfeng Han ◽  
Ye Zhou ◽  
Zhe Lin ◽  
Jianfeng Ma ◽  
...  

The demand for a centrifugal pump with open impellers for conveying dense fine particles in solid-liquid two-phase flow has increased significantly in actual engineering. The wear of dense fine particles on the centrifugal pump is also exceedingly prominent, which affects the engineering efficiency and economic benefits. The two-phase flow in the open centrifugal pump is three-dimensional and unsteady; the movement of high-volume concentration particles in the centrifugal pump and its mutual influence on the two-phase flow, which results in the calculation of wear, are very intricate. To study the wear characteristics of the centrifugal pump with open impeller with high-volume concentration particles more accurately, numerical simulation and experimental comparison are carried out for the impeller wear of dense fine particles transported by the centrifugal pump with open impellers. Considering the relationship between particles and walls, we used the Fluent 18.0 built-in rebound function and wear model. The RNG k-ε model and the DDPM model were adopted in the numerical simulation, and the numerical solution for centrifugal pump wear was performed under flow rate (9.6 m3·h−1, 12.8 m3·h−1, 16 m3·h−1, and 19.2 m3·h−1), different particle sizes (0.048 mm, 0.106 mm, 0.15 mm, 0.27 mm, and 0.425 mm), and different particle volume concentrations (10%, 15%, 20%, 25%, and 30%), respectively. By comparing the serious wear positions of the impeller, the experimental results correspond well with the numerical simulation, which can be used to predict and study the wear characteristics of the impeller. The results show that the most serious area of blade wear is the middle part of the pressure surface, followed by the middle part of the upper part of the blade. The wear of the impeller is greatly affected by relevant parameters, such as pump flow rate, particle diameter, and particle volume concentration. These results can provide some basis for the wear-resistant design of dense fine particle impeller.


Sign in / Sign up

Export Citation Format

Share Document