scholarly journals Design Guidelines for Axial Turbines Operating With Non-Ideal Compressible Flows

2021 ◽  
Author(s):  
Andrea Giuffre' ◽  
Matteo Pini
Author(s):  
Andrea Giuffre’ ◽  
Matteo Pini

Abstract The impact of non-ideal compressible flows on the fluid-dynamic design of axial turbine stages is examined. First, the classical similarity equation is revised and extended to account for the effect of flow non-ideality and compressibility. Then, the influence of the most relevant design parameters is investigated through the application of a dimensionless turbine stage model embedding a first-principles loss model. The results show that the selection of optimal duty coefficients is scarcely affected by the molecular complexity of the working fluid, whereas compressibility effects produce an offset in the efficiency trends and in the optimal flow coefficient. Furthermore, flow non-ideality can lead to either an increase or a decrease of stage efficiency of the order of 2–3% relative to turbines designed to operate in dilute gas state. This effect can be predicted at preliminary design phase through the evaluation of the isentropic pressure-volume exponent. 3D RANS simulations of selected test cases corroborate the trends predicted with the reduced-order turbine stage model.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Andrea Giuffre' ◽  
Matteo Pini

Abstract The impact of non-ideal compressible flows on the fluid-dynamic design of axial turbine stages is examined. First, the classical similarity equation (CSE) is revised and extended to account for the effect of flow non-ideality. Then, the influence of the most relevant design parameters is investigated through the application of a dimensionless turbine stage model embedding a first-principles loss model. The results show that compressibility effects induced by the fluid molecular complexity and the stage volumetric flow ratio produce an offset in the efficiency trends and in the optimal stage layout. Furthermore, flow non-ideality can lead to either an increase or a decrease of stage efficiency up to 3–4% relative to turbines designed to operate in dilute gas state. This effect can be predicted at preliminary design phase through the evaluation of the isentropic pressure–volume exponent. Three-dimensional (3D) RANS simulations of selected test cases corroborate the trends predicted with the reduced-order turbine stage model. URANS computations provide equivalent trends, except for case study niMM1, featuring a non-monotonic variation of the generalized isentropic exponent. For such turbine stage, the efficiency is predicted to be higher than the one computed with any steady-state model based on the control volume approach.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document