Sparse Reconstruction Method of Non-Uniform Sampling and its Application in Blade Tip Timing System

2021 ◽  
Author(s):  
Jie Tian ◽  
Xiaopu Zhang ◽  
Yong Chen ◽  
Peter Russhard ◽  
Ouyang Hua
Author(s):  
Jie Tian ◽  
Xiaopu Zhang ◽  
Yong Chen ◽  
Peter Russhard ◽  
Hua Ouyang

Abstract Based on the blade vibration theory of turbomachinery and the basic principle of blade timing systems, a sparse reconstruction model is derived for the tip timing signal under an arbitrary sensor circumferential placement distribution. The proposed approach uses the sparsity of the tip timing signal in the frequency domain. The application of compressive sensing in reconstructing the blade tip timing signal and monitoring multi-mode blade vibrations is explored. To improve the reconstruction effect, a number of numerical experiments are conducted to examine the effects of various factors on synchronous and non-synchronous signals. This enables the specific steps involved in the compressive sensing reconstruction of tip timing signals to be determined. The proposed method is then applied to the tip timing data of a 27-blade rotor. The results show that the method accurately identifies the multi-mode blade vibrations at different rotation speeds. The proposed method has the advantages of low dependence on prior information, insensitivity to environmental noise, and simultaneous identification of synchronous and non-synchronous signals. The experimental results validate the effectiveness of the proposed approach in engineering applications.


2011 ◽  
Vol 403-408 ◽  
pp. 1596-1600
Author(s):  
Shou Qiang Chen ◽  
Hua Sun ◽  
Yu Ke Wang

Based on the character that many channels should be used in the periodic non uniform sampling, this paper has transferred sampling to a matrix vector operation by the theory in confederate subspace. By adopting periodic non uniform sampling and reconstruction method basing L1 algorithm, this paper analyzed the reconstruction requirements of the Minimal L1 Norm in periodic non uniform sampling and perfectly reconstructed signals via interpolator. Last, take the multiband sinusoidal Signal as an example, a simulation has been conducted.


Author(s):  
Anna G. Matveeva ◽  
Victoria N. Syryamina ◽  
Vyacheslav M. Nekrasov ◽  
Michael K. Bowman

Non-uniform schemes for collection of pulse dipole spectroscopy data can decrease and redistribute noise in the distance spectrum for increased sensitivity and throughput.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1262
Author(s):  
Sunil Kumar Mishra ◽  
Amitkumar V. Jha ◽  
Vijay Kumar Verma ◽  
Bhargav Appasani ◽  
Almoataz Y. Abdelaziz ◽  
...  

This paper presents an optimized algorithm for event-triggered control (ETC) of networked control systems (NCS). Initially, the traditional backstepping controller is designed for a generalized nonlinear plant in strict-feedback form that is subsequently extended to the ETC. In the NCS, the controller and the plant communicate with each other using a communication network. In order to minimize the bandwidth required, the number of samples to be sent over the communication channel should be reduced. This can be achieved using the non-uniform sampling of data. However, the implementation of non-uniform sampling without a proper event triggering rule might lead the closed-loop system towards instability. Therefore, an optimized event triggering algorithm has been designed such that the system states are always forced to remain in stable trajectory. Additionally, the effect of ETC on the stability of backstepping control has been analyzed using the Lyapunov stability theory. Two case studies on an inverted pendulum system and single-link robot system have been carried out to demonstrate the effectiveness of the proposed ETC in terms of system states, control effort and inter-event execution time.


Sign in / Sign up

Export Citation Format

Share Document