scholarly journals The Influence of Cycle-to-Cycle Hydrocarbon Emissions on Cyclic NO:NO2 Ratio From a HSDI Diesel Engine

2021 ◽  
Author(s):  
Felix Leach ◽  
Varun Shankar ◽  
Mark Peckham ◽  
Martin Davy
Author(s):  
Felix Leach ◽  
Varun Shankar ◽  
Martin Davy ◽  
Mark Peckham

Abstract Knowledge of the NO:NO2 ratio emitted from a diesel engine is particularly important for ensuring the highest performance of SCR NOx aftertreatment systems. As real driving emissions from vehicles increase in importance, the need to understand the NO:NO2 ratio emitted from a diesel engine during transient operation similarly increases. In this study, crank-angle resolved NO and NO2 measurements using fast response CLD (for NO) and a new fast LIF instrument (for NO2) have been taken from a single cylinder diesel engine at three different speed and load points including a point with and without EGR. In addition, crank-angle resolved unburned hydrocarbon (UHC) measurements have been taken simultaneously using a fast FID. A variation of the NO:NO2 ratio through the engine's exhaust stroke is also observed indicative of in-cylinder stratification of NO and NO2. A new link between the NO:NO2 ratio and the UHC emissions from an individual engine cycle is observed - the results show that where there are higher levels of UHC emissions in the first part of the exhaust stroke (blowdown), the proportion of NO2 emitted from that cycle is increased. This effect is observed and analysed across all test points and with and without EGR. The performance of the new fast LIF analyser has also been evaluated, in comparison with the previous state-of-the-art and standard "slow" emissions measurement apparatus showing a reduction in the noise of the measurement by an order of magnitude.


Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


Author(s):  

The prospects of using hydrogen as a motor fuel are noted. The problems that arise when converting a diesel engine to run on hydrogen are considered. The features of the organization of the working process of enginesrunning on hydrogen are analyzed. A method of supplying a hydrogenair mixture to a diesel engine is investigated. To supply hydrogen to the engine cylinders, it is proposed to use the Leader4M installation developed by TechnoHill Club LLC (Moscow). Experimental studies of a stationary diesel engine of the D245.12 S type with the supply of hydrogen at the inlet obtained at this installation are carried out. At the maximum power mode, the supply of hydrogen from this installation to the inlet of the diesel engine under study was 0.9 % by weight (taking into account the difference in the calorific value of oil diesel fuel and hydrogen). Such a supply of hydrogen in the specified mode made it possible to increase the fuel efficiency of the diesel engine and reduce the smoke content of exhaust gases, carbon monoxide and unburned hydrocarbon emissions. Keywords internal combustion engines; diesel engine; diesel fuel; hydrogen; hydrogenair mixture; fuel efficiency; exhaust gas toxicity indicators


Sign in / Sign up

Export Citation Format

Share Document