Particle Transport Coefficient (PTC) and Phase-Efficiency Diagram: A New Perspective to Evaluate Three-Phase Particle-Laden Flow

2021 ◽  
Author(s):  
Zhifeng Zhang ◽  
Antoine Pruvot ◽  
James Mcandrew ◽  
Pablo A. Cisternas
Author(s):  
Zhifeng Zhang ◽  
Antoine Jean-Claude Jacques Pruvot ◽  
Pablo Cisternas ◽  
James McAndrew

Abstract Many technologies have been developed to improve the ability of fluids to transport particles. However, the evaluation of particle transport efficiency remains challenging, especially in complex flow such as three-phase flow. In the present research, theoretical and experimental work is conducted to develop a new perspective of evaluating particle transport technologies, particle transport coefficient (PTC) as the particle transport distance per unit volume of water consumption considering the transport efficiency and environmental cost. The mathematical form of the PTC for the steady-state transport case is derived, followed by three special transport cases: (a) PTC = 0 when particle settled or stuck, (b) PTC = infinity in the vertical direction, considering gravity or buoyant with carrier fluid stationary, while PTC = 0 in a horizontal pipe due to particle settlement; and (c) PTC = 2 for an infinitely small particle at the center of a fully-developed laminar flow in a pipe. Furthermore, the fluid property and surface property influence on PTC are experimentally demonstrated. We believe the proposed approach can promote the development of particle transport technologies.


2019 ◽  
Vol 66 (8) ◽  
pp. 6493-6504 ◽  
Author(s):  
Zhikang Shuai ◽  
Yang Li ◽  
Weimin Wu ◽  
Chunming Tu ◽  
An Luo ◽  
...  

Author(s):  
Sahand Pirouzpanah ◽  
Gerald L. Morrison

Electrical Submersible Pumps (ESPs) are widely used in upstream oil production. The presence of a low concentration solid phase, particle-laden flow, in the production fluid may cause severe damage in the internal sections of the pump which reduces its operating lifetime. To better understand the ESP pump’s endurance, an ESP-WJE1000, manufactured by Baker Hughes Company was studied numerically to determine the pump’s flow behavior at its best efficiency point. Computational Fluid Dynamics (CFD) analysis was conducted on two stages of the pump’s primary flow path employing Eulerian-Granular scheme in ANSYS-Fluent. The key parameters affecting the erosion phenomena within the pump such as turbulence kinetic energy, local sand concentration and near wall relative sand velocity were identified. The predictive erosion model applicable to pumps was developed by correlating the erosion key parameters with available experimental results.


2011 ◽  
Vol 320 ◽  
pp. 434-440 ◽  
Author(s):  
Bin Li ◽  
Hao Qi

In this paper, the flow law of gas-liquid-solid three-phase flow was studied in the disc pump internal, established a set of numerical simulation method that calculated multiphase flows of disc pump internal. Finally the structure of the disk pump impeller was improved, and designed a new disc pump with multiple-blade structure, through numerical simulation calculation for the gas-liquid-solid three-phase flow of the disc pump internal, mastered change rule of fluid pressure and speed in disk pump internal, obtained relation curves between the different solid phase particle concentration with different gas phase concentration and the head with the efficiency of the pump. The head of the new disc pump was significantly improved by analyzing the disc pump head curve and the actual application.


2020 ◽  
Vol 37 ◽  
pp. 100905 ◽  
Author(s):  
P.E. Grabowski ◽  
S.B. Hansen ◽  
M.S. Murillo ◽  
L.G. Stanton ◽  
F.R. Graziani ◽  
...  

Author(s):  
O. O. Bello ◽  
K. M. Reinicke ◽  
C. Teodoriu ◽  
M.-Y. Liu

Particle transport issues in three-phase gas-liquid-solid flow systems continue to challenge petroleum as well as mining, petrochemical, biochemical, pharmaceutical, food, nuclear, pulp and paper industries. The poor knowledge of particle transport processes associated with three-phase gas-liquid-solid pipe flow has greatly hampered the design and cost-effectiveness of these systems. This paper presents experimental and computational studies on three-phase gas-liquid-solid pipe flow systems in order to increase the understanding of particle transport and dispersion behaviour as well as the conditions for solid particle deposition and erosion risk initiation. The non-invasive high-speed charge coupled device (CCD) measuring technique is used in this work to study the particle velocities in three-phase gas-liquid-solid pipe flow systems. A calculation method to predict particle velocity in the three-phase gas-liquid-solid pipe flow systems is proposed. The model is based on the fundamentals of the particle mechanics in the three-phase gas-liquid-solid pipe flow systems. A good agreement between experiment and prediction is obtained.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 760 ◽  
Author(s):  
Jianfei Lu ◽  
Tong Wang ◽  
Lin Li ◽  
Zichao Yin ◽  
Ronghui Wang ◽  
...  

The bubble bursting process existing in the particle flow is a complex gas-liquid-solid three-phase coupling dynamic problem. The bubble bursting mechanism, including dynamic characteristics and wall effects, is not clear. To address the above matters, we present a modeling method for the piecewise linear interface calculation-volume of fluid (PLIC-VOF) based bubble burst. The bubble bursting process near or on the wall is analyzed to reveal the dynamic characteristics of bubble bursting and obtain the effect of a bubble bursting on the surrounding flow field. Then a particle image velocimetry (PIV) based self-developed experimental observation platform is established, and the effectiveness of the proposed method is verified. Research results indicate that, in the high-speed turbulent environment, a large pressure difference existed in the bubble tail, which induces the bubble burst to occur; the distance between the wall and the bubble decreases; the higher the flow velocity is, the less time is acquired for bubble bursting, but when the flow velocity exceeds the critical velocity 50 m/s, more time is needed; the coalescence-burst process of double bubbles increases the bubble bursting time, which causes the acceleration of particle motion to reduce.


Author(s):  
H.-J. Ou

The understanding of the interactions between the small metallic particles and ceramic surfaces has been studied by many catalyst scientists. We had developed Scanning Reflection Electron Microscopy technique to study surface structure of MgO hulk cleaved surface and the interaction with the small particle of metals. Resolutions of 10Å has shown the periodic array of surface atomic steps on MgO. The SREM observation of the interaction between the metallic particles and the surface may provide a new perspective on such processes.


1979 ◽  
Vol 10 (3) ◽  
pp. 145-151 ◽  
Author(s):  
Sallie W. Hillard ◽  
Laura P. Goepfert

This paper describes the concept of teaching articulation through words which have inherent meaning to a child’s life experience, such as a semantically potent word approach. The approach was used with six children. Comparison of pre/post remediation measures indicated that it has promise as a technique for facilitating increased correct phoneme production.


Sign in / Sign up

Export Citation Format

Share Document