Nonlinear Vibrations and Multiple Resonances of Fluid-Filled, Circular Shells, Part 1: Equations of Motion and Numerical Results

2000 ◽  
Vol 122 (4) ◽  
pp. 346-354 ◽  
Author(s):  
M. Amabili ◽  
F. Pellicano ◽  
A. F. Vakakis

The response-frequency relationship in the vicinity of a resonant frequency, the occurrence of travelling wave response and the presence of internal resonances are investigated for simply supported, circular cylindrical shells. Donnell’s nonlinear shallow-shell theory is used. The boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. The problem is reduced to a system of four ordinary differential equations by means of the Galerkin method. The radial deflection of the shell is expanded by using a basis of four linear modes. The effect of internal fluid is also investigated. The equations of motion are studied by using a code based on the Collocation Method. The present model is validated by comparison of some results with others available. A water-filled shell presenting the phenomenon of 1:1:1:2 internal resonances is investigated for the first time; it shows intricate and interesting dynamics. [S0739-3717(00)01204-6]

Author(s):  
Paulo B. Gonc¸alves ◽  
Frederico M. A. da Silva ◽  
Zeno´n J. G. N. del Prado

The present work investigates the nonlinear dynamic behavior and instabilities of partially fluid-filled cylindrical shell subjected to lateral pressure. Donnell shallow shell theory is employed to model the shell. The fluid is modeled as non-viscous and incompressible and its irrotational motion is described by a velocity potential which satisfies the Laplace equation. A discrete low-dimensional model for the nonlinear vibration analysis of thin cylindrical shells is derived to study the shell vibrations. First, a general expression for the nonlinear vibration modes that satisfy all the relevant boundary, continuity and symmetry conditions is derived using a perturbation procedure validated in previous studies and then the Galerkin method is used to discretize the equations of motion. The same modal solution is used to derive the hydrodynamic pressure on the shell wall. The influence played by the height of the internal fluid on the natural frequencies, nonlinear shell response and bifurcations is examined.


Author(s):  
Frederico M. A. Silva ◽  
Roger Otávio P. Montes ◽  
Paulo B. Gonçalves ◽  
Zenón J. G. N. del Prado

This work analyzes the nonlinear vibrations of a simply supported functionally graded cylindrical shell considering the effects of an internal fluid and static preloading. The cylindrical shell is subjected to a time dependent axial loading. The fluid is considered to be incompressible, non-viscous and irrotational and its effect on the shell wall is obtained using the potential flow theory. The shell is modeled by Donnell nonlinear shallow shell theory. The axial and circumferential displacement fields are described in terms of lateral displacement, thus generating a low-dimensional model, while the lateral displacement field is determined by a perturbation procedure which provides a general expression for the nonlinear vibration modes. These modal expansions satisfy the boundary and symmetry conditions of the problem. The discretized equations of motion are obtained by applying the Galerkin method. Various numerical techniques are employed to obtain the resonance curves and time responses of the cylindrical shell, showing the influence of the geometry, the internal fluid, static preloading and functionally graded material law on the shell dynamics and stability.


2000 ◽  
Author(s):  
M. Amabili ◽  
F. Pellicano ◽  
M. P. Païdoussis

Abstract The large-amplitude response of thin, simply supported circular cylindrical shells to a harmonic excitation in the spectral neighbourhood of one of the lowest natural frequencies is investigated. Donnell’s nonlinear shallow-shell theory is used and the solution is obtained by Galerkin projection. A mode expansion including driven and companion modes, axisymmetric modes and additional asymmetric modes is used. In particular, asymmetric modes with twice the number of circumferential waves of driven and companion modes are included in the analysis. The boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The equations of motion are studied by using a code based on the Collocation Method. Validation of the present model is obtained by comparison with other authoritative results and new experimental results. The effect of the number of axisymmetric modes used in the expansion on the response of the shell is investigated, clarifying questions open for a long time. The contribution of additional longitudinal modes is absolutely insignificant in both the driven and companion mode responses. The effect of modes with harmonics of the circumferential mode number n under consideration is limited so far as the trend of nonlinearity is concerned, but is significant in the response with companion mode participation for lightly damped shells (empty shells). Results show the occurrence of travelling wave response in the proximity of the resonance frequency, the fundamental role of the first and third axisymmetric modes in the expansion of the radial deflection with one longitudinal half-wave, and limit cycle responses. A liquid (water) contained in the shell generates a much stronger softening behaviour of the system. Experiments with a water-filled circular cylindrical shell made of steel are in very good agreement with the present theory.


2021 ◽  
Vol 37 ◽  
pp. 346-358
Author(s):  
Fuchun Yang ◽  
Xiaofeng Jiang ◽  
Fuxin Du

Abstract Free vibrations of rotating cylindrical shells with distributed springs were studied. Based on the Flügge shell theory, the governing equations of rotating cylindrical shells with distributed springs were derived under typical boundary conditions. Multicomponent modal functions were used to satisfy the distributed springs around the circumference. The natural responses were analyzed using the Galerkin method. The effects of parameters, rotation speed, stiffness, and ratios of thickness/radius and length/radius, on natural response were also examined.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Justine Yasappan ◽  
Ángela Jiménez-Casas ◽  
Mario Castro

Fluids subject to thermal gradients produce complex behaviors that arise from the competition with gravitational effects. Although such sort of systems have been widely studied in the literature for simple (Newtonian) fluids, the behavior of viscoelastic fluids has not been explored thus far. We present a theoretical study of the dynamics of a Maxwell viscoelastic fluid in a closed-loop thermosyphon. This sort of fluid presents elastic-like behavior and memory effects. We study the asymptotic properties of the fluid inside the thermosyphon and the exact equations of motion in the inertial manifold that characterizes the asymptotic behavior. We derive, for the first time, the mathematical derivations of the motion of a viscoelastic fluid in the interior of a closed-loop thermosyphon under the effects of natural convection and a given external temperature gradient.


Author(s):  
Pol Spanos ◽  
Alba Sofi ◽  
Juan Wang ◽  
Berry Peng

Pipelines located on the decks of FPSO systems are exposed to damage due to sea waves induced random loading. In this context, a methodology for estimating the fatigue life of conveying-fluid pipelines is presented. The pipeline is subjected to a random support motion which simulates the effect of the FPSO heaving. The equation of motion of the fluid-carrying pipeline is derived by assuming small amplitude displacements, modeling the empty pipeline as a Bernoulli-Euler beam, and adopting the so-called “plug-flow” approximation for the fluid (Pai¨doussis, 1998). Random vibration analysis is carried out by the Galerkin method selecting as basis functions the natural modes of a beam with the same boundary conditions as the pipeline. The discretized equations of motion are used in conjunction with linear random vibration theory to compute the stress spectrum for a generic section of the pipeline. For this purpose, the power spectrum of the acceleration at the deck level is determined by using the Response Amplitude Operator of the FPSO hull. Finally, the computed stress spectrum is used to estimate the pipeline fatigue life employing an appropriate S-N fatigue curve of the material. An illustrative example concerning a pipeline simply-supported at both ends is included in the paper.


2006 ◽  
Author(s):  
M. Amabili ◽  
C. Touze´ ◽  
O. Thomas

The aim of the present paper is to compare two different methods available to reduce the complicated dynamics exhibited by large amplitude, geometrically nonlinear vibrations of a thin shell. The two methods are: the proper orthogonal decomposition (POD) and an asymptotic approximation of the Nonlinear Normal Modes (NNMs) of the system. The structure used to perform comparisons is a water-filled, simply supported circular cylindrical shell subjected to harmonic excitation in the spectral neighbourhood of the fundamental natural frequency. A reference solution is obtained by discretizing the Partial Differential Equations (PDEs) of motion with a Galerkin expansion containing 16 eigenmodes. The POD model is built by using responses computed with the Galerkin model; the NNM model is built by using the discretized equations of motion obtained with the Galerkin method, and taking into account also the transformation of damping terms. Both the POD and NNMs allow to reduce significantly the dimension of the original Galerkin model. The computed nonlinear responses are compared in order to verify the accuracy and the limits of these two methods. For vibration amplitudes equal to 1.5 times the shell thickness, the two methods give very close results to the original Galerkin model. By increasing the excitation and vibration amplitude, significant differences are observed and discussed.


2019 ◽  
Vol 2019 (2) ◽  
pp. 59-75
Author(s):  
Jarosław Stanisławski

Summary The paper presents simulation method and results of calculations determining behavior of helicopter and landing site loads which are generated during phase of the helicopter take-off and landing. For helicopter with whirling rotor standing on ground or touching it, the loads of landing gear depend on the parameters of helicopter movement, occurrence of wind gusts and control of pitch angle of the rotor blades. The considered model of helicopter consists of the fuselage and main transmission treated as rigid bodies connected with elastic elements. The fuselage is supported by landing gear modeled by units of spring and damping elements. The rotor blades are modeled as elastic axes with sets of lumped masses of blade segments distributed along them. The Runge-Kutta method was used to solve the equations of motion of the helicopter model. According to the Galerkin method, it was assumed that the parameters of the elastic blade motion can be treated as a combination of its bending and torsion eigen modes. For calculations, data of a hypothetical light helicopter were applied. Simulation results were presented for the cases of landing helicopter touching ground with different vertical speed and for phase of take-off including influence of rotor speed changes, wind gust and control of blade pitch. The simulation method may help to define the limits of helicopter safe operation on the landing surfaces.


2017 ◽  
Vol 16 (01) ◽  
pp. 1750009
Author(s):  
A. Schelle

The interplay between spontaneously broken gauge symmetries and Bose–Einstein condensation has long been controversially discussed in science, since the equations of motion are invariant under phase transformations. Within the present model, it is illustrated that spontaneous symmetry breaking appears as a non-local process in position space, but within disjoint subspaces of the underlying Hilbert space. Numerical simulations show that it is the symmetry of the relative phase distribution between condensate and non-condensate quantum fields which is spontaneously broken when passing the critical temperature for Bose–Einstein condensation. Since the total number of gas particles remains constant over time, the global U(1)-gauge symmetry of the system is preserved.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
R. D. Firouz-Abadi ◽  
M. Rahmanian ◽  
M. Amabili

The present study considers the free vibration analysis of moderately thick conical shells based on the Novozhilov theory. The higher order governing equations of motion and the associate boundary conditions are obtained for the first time. Using the Frobenius method, exact base solutions are obtained in the form of power series via general recursive relations which can be applied for any arbitrary boundary conditions. The obtained results are compared with the literature and very good agreement (up to 4%) is achieved. A comprehensive parametric study is performed to provide an insight into the variation of the natural frequencies with respect to thickness, semivertex angle, circumferential wave numbers for clamped (C), and simply supported (SS) boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document