scholarly journals A Quantitative Determination of Minimum Film Thickness in Elastohydrodynamic Circular Contacts

Author(s):  
Wassim Habchi ◽  
Philippe Vergne

Abstract The current work presents a quantitative approach for the prediction of minimum film thickness in elastohydrodynamic lubricated (EHL) circular contacts. In contrast to central film thickness, minimum film thickness can be hard to accurately measure, and it is usually poorly estimated by classical analytical film thickness formulae. For this, an advanced finite-element-based numerical model is used to quantify variations of the central-to-minimum film thickness ratio with operating conditions, under isothermal Newtonian pure-rolling conditions. An ensuing analytical expression is then derived and compared to classical film thickness formulae and to more recent similar expressions. The comparisons confirmed the inability of the former to predict the minimum film thickness, and the limitations of the latter, which tend to overestimate the ratio of central-to-minimum film thickness. The proposed approach is validated against numerical results as well as experimental data from the literature, revealing an excellent agreement with both. This framework can be used to predict minimum film thickness in circular elastohydrodynamic contacts from knowledge of central film thickness, which can be either accurately measured or rather well estimated using classical film thickness formulae.

2001 ◽  
Vol 124 (2) ◽  
pp. 313-319 ◽  
Author(s):  
J. Bouyer ◽  
M. Fillon

The present study deals with the experimental determination of the performance of a 100 mm diameter plain journal bearing submitted to a misalignment torque. Hydrodynamic pressure and temperature fields in the mid-plane of the bearing, temperatures in two axial directions, oil flow rate, and minimum film thickness, were all measured for various operating conditions and misalignment torques. Tests were carried out for rotational speeds ranging from 1500 to 4000 rpm with a maximum static load of 9000 N and a misalignment torque varying from 0 to 70 N.m. The bearing performances were greatly affected by the misalignment. The maximum pressure in the mid-plane decreased by 20 percent for the largest misalignment torque while the minimum film thickness was reduced by 80 percent. The misalignment caused more significant changes in bearing performance when the rotational speed or load was low. The hydrodynamic effects were then relatively small and the bearing offered less resistance to the misalignment.


2000 ◽  
Vol 122 (4) ◽  
pp. 689-696 ◽  
Author(s):  
I. Krˇupka ◽  
M. Hartl ◽  
R. Polisˇcˇuk ◽  
J. Cˇerma´k ◽  
M. Lisˇka

Colorimetric interferomentry has been applied to the study of EHD lubrication of point contacts under pure rolling conditions to obtain lubricant film shapes with high accuracy and resolution. An RGB CCD camera together with an extensive image processing software has enabled real time evaluation of chromatic interferograms. The classical numerical isothermal solution of EHD lubrication of point contacts has been used for the comparison with three-dimensional representations of film thickness distributions obtained from experiments. A good agreement was found between experimental and numerical EHD film shapes by comparing lubricant film profiles and positions of minimum film thickness. Both experimental results and numerical solution confirm the ratio between central and minimum film thickness to change significantly with operating conditions. [S0742-4787(00)00404-5]


2004 ◽  
Vol 126 (1) ◽  
pp. 105-111 ◽  
Author(s):  
B. Damiens ◽  
C. H. Venner ◽  
P. M. E. Cann ◽  
A. A. Lubrecht

This paper focuses on the lubrication behavior of starved elliptical Elasto-HydroDynamic (EHD) contacts. Starvation is governed by the amount of lubricant available in the inlet region and can result in much thinner films than occurring under fully flooded conditions. Therefore, it would be desirable to be able to predict the onset and severity of starvation and to be able to relate film reduction directly to the operating conditions and lubricant properties. The aim of this work is to explore the influence of these parameters on starvation. A combined modeling and experimental approach has been employed. The numerical model has been developed from an earlier circular contact study [1]. In this model, the amount and distribution of the lubricant in the inlet region determines the onset of starvation and predicts the film decay in the contact. Numerical simulations for a uniform layer on the surface show that a single parameter, characteristic of the inlet length of the contact in the fully flooded regime, determines the starved behavior. Film thickness measurements under starved conditions were performed to validate this theory. For a circular contact excellent agreement was found. In theory the same mechanism applies to elliptic contacts, however, the behavior is more complicated.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 80 ◽  
Author(s):  
Petr Sperka ◽  
Ivan Krupka ◽  
Martin Hartl

Prediction of minimum film thickness is often used in practice for calculation of film parameter to design machine operation in full film regime. It was reported several times that majority of prediction formulas cannot match experimental data in terms of minimum film thickness. These standard prediction formulas give almost constant ratio between central and minimum film thickness while numerical calculations show ratio which spans from 1 to more than 3 depending on M and L parameters. In this paper, an analytical formula of this ratio is presented for lubricants with various pressure–viscosity coefficients. The analytical formula is compared with optical interferometry measurements and differences are discussed. It allows better prediction, compared to standard formulas, of minimum film thickness for wide range of M and L parameters.


Author(s):  
P Eriksson ◽  
V Wikström ◽  
R Larsson

In a previous investigation, grease thickener fibres were tracked as they passed through an elastohydrodynamic (EHD) contact in pure rolling using interferometry in a standard ball-and-disc apparatus. In order to capture single thickener fibres, a high-speed video camera was used. Here, the experiments have been repeated introducing different amounts of side slip for different rolling speeds and a faster video camera capable of capturing 4500 frames/s. The contact was lubricated with a continuous supply of grease. Two greases, based on the same synthetic poly(α-olefin) but thickened with Li-12-OH and lithium complex soap respectively, were studied. It was observed that the thickener fibres were stretched both before entering the contact and as they passed through it. Fibres seem to avoid the minimum film thickness regions and, if they enter, the film is restored immediately after passage.


Author(s):  
Federico Cheli ◽  
Roberto Corradi ◽  
Giorgio Diana ◽  
Alan Facchinetti

Tramcar vehicles significantly differ from traditional railway vehicles both for the adopted structural configuration and design solutions and for the operating conditions. For this reason, a new numerical model specific for the analysis of tramcar dynamics has been developed by Politecnico di Milano. Before the numerical model can be adopted as a useful mean to analyse tramcar operational problems, the capability of the model to reproduce the actual tramcar dynamic behaviour has to be verified. The paper deals with the validation of the developed numerical model by means of comparison with experimental data.


Author(s):  
A. D. Chapkov ◽  
C. H. Venner ◽  
A. A. Lubrecht

The influence of surface roughness on the performance of bearings and gears operating under ElastoHydrodynamic Lubrication (EHL) conditions has become increasingly important over the last decade, as the average film thickness decreased due to various influences. Surface features can reduce the minimum film thickness and thus increase the wear. They can also increase the temperature and the pressure fluctuations, which directly affects the component life. In order to describe the roughness geometry inside an EHL contact, the amplitude reduction of harmonic waviness has been studied over the last ten years. This theory currently allows a quantitative prediction of the waviness amplitude and includes the influence of wavelength and contact operating conditions. However, the model assumes a Newtonian behaviour of the lubricant. The current paper makes a first contribution to the extension of the roughness amplitude reduction for EHL point contacts including non-Newtonian effects.


Sign in / Sign up

Export Citation Format

Share Document