Detecting and Correcting Cylinder Imbalance in Direct Injection Engines

2000 ◽  
Vol 123 (3) ◽  
pp. 413-424 ◽  
Author(s):  
M. J. van Nieuwstadt ◽  
I. V. Kolmanovsky

Modern direct injection engines feature high pressure fuel injection systems that are required to control the fuel quantity very accurately. Due to limited manufacturing accuracy these systems can benefit from an on-line adaptation scheme that compensates for injector variability. Since cylinder imbalance affects many measurable signals, different sensors and algorithms can be used to equalize torque production by the cylinders. This paper compares several adaptation schemes that use different sensors. The algorithms are evaluated on a cylinder-by-cylinder simulation model of a direct injection high speed diesel engine. A proof of stability and experimental results are reported as well.

Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


Author(s):  
I P Gilbert ◽  
A R Heath ◽  
I D Johnstone

The need to increase power, to improve fuel economy and to meet stringent exhaust emissions legislation with a high level of refinement has provided a challenge for the design of a compact high-speed direct injection (HSDI) diesel engine. This paper describes various aspects of cylinder head design with particular consideration of layout and number of valves, valve actuation, port selection strategy, fuel injection systems and cylinder head construction.


Author(s):  
J A Stephenson ◽  
B A Hood

The paper describes the development of a high-speed direct injection (HSDI) diesel engine suitable for passenger car applications. The evolution from a low emissions medium-speed engine, through a four-cylinder 2.3 litre research engine, into a four-cylinder 2.0 litre production engine is presented. The challenge to the engineer has been to develop the HSDI engine to operate with acceptable noise, emissions, smoke and driveability over the wide speed range (up to 5000 r/min) required for passenger cars. The key element in this task was the optimization of the combustion system and fuel injection equipment. The HSDI is shown to have a significant fuel economy advantage over the prechamber indirect injection (IDI) engine. Future developments of the fuel injection system are described which will further enhance the HSDI engine and provide additional noise and emissions control.


Author(s):  
Tomio Obokata ◽  
Tsuneaki Ishima ◽  
Seiichi Shiga ◽  
Yousuke Eguro ◽  
Tomoyuki Matsuda ◽  
...  

Abstract To realize the pre-mixed combustion type Diesel engine, analyses of the wide-angle conical spray flow and its application to the direct injection Diesel engine have been made. In the present work, the spray was evaluated by high speed flow visualization, particle image velocimetry (PTV) measurement, phase Doppler anemometer (PDA) measurement and numerical simulation by KTVA-3V code, and finally the combustion and exhaust characteristics of the proposed engine are examined. The penetration and the shape of the conical sprays under different ambient pressures (0.1, 1.0 and 2.0 MPa) are obtained experimentally and with numerical simulations. Generally, good agreements between them are achieved. It is also cleared that the spray formation is strongly influenced by the surrounding pressure. PIV measurements show the initial development of the spray. The maximum velocity is about 80 m/s, which is almost in the same range as that obtained by the PDA measurements. For the combustion experiment, the excess air ratio was set at 3.1 and 2.5. The engine speed was varied from 1000 to 2000 rpm. Expected premixed combustion region is realized at around the fuel injection timing prior to 65 degree BTDC, where NOx and soot emissions are almost zero at the excess air ratio of 3.1.


Sign in / Sign up

Export Citation Format

Share Document