The Use of Neural Nets for Matching Fixed or Variable Geometry Compressors With Diesel Engines

2003 ◽  
Vol 125 (2) ◽  
pp. 572-579 ◽  
Author(s):  
S. A. Nelson ◽  
Z. S. Filipi ◽  
D. N. Assanis

A technique which uses trained neural nets to model the compressor in the context of a turbocharged diesel engine simulation is introduced. This technique replaces the usual interpolation of compressor maps with the evaluation of a smooth mathematical function. Following presentation of the methodology, the proposed neural net technique is validated against data from a truck type, 6-cylinder 14-liter diesel engine. Furthermore, with the introduction of an additional parameter, the proposed neural net can be trained to simulate an entire family of compressors. As a demonstration, a family of compressors of different sizes is represented with a single neural net model which is subsequently used for matching calculations with intercooled and nonintercooled engine configurations at different speeds. This novel approach readily allows for evaluation of various options within a wide range of possible compressor configurations prior to prototype production. It can also be used to represent the variable geometry machine regardless of the method used to vary compressor characteristics. Hence, it is a powerful design tool for selection of the best compressor for a given diesel engine system and for broader system optimization studies.

2017 ◽  
Vol 67 (4) ◽  
pp. 375 ◽  
Author(s):  
Anand Mammen Thomas ◽  
Jensen Samuel J. ◽  
Paul Pramod M. ◽  
A. Ramesh ◽  
R. Murugesan ◽  
...  

Modelling of a turbocharger is of interest to the engine designer as the work developed by the turbine can be used to drive a compressor coupled to it. This positively influences charge air density and engine power to weight ratio. Variable geometry turbocharger (VGT) additionally has a controllable nozzle ring which is normally electro-pneumatically actuated. This additional degree of freedom offers efficient matching of the effective turbine area for a wide range of engine mass flow rates. Closing of the nozzle ring (vanes tangential to rotor) result in more turbine work and deliver higher boost pressure but it also increases the back pressure on the engine induced by reduced turbine effective area. This adversely affects the net engine torque as the pumping work required increases. Hence, the optimum vane position for a given engine operating point is to be found through simulations or experimentation. A thermodynamic simulation model of a 2.2l 4 cylinder diesel engine was developed for investigation of different control strategies. Model features map based performance prediction of the VGT. Performance of the engine was simulated for steady state operation and validated with experimentation. The results of the parametric study of VGT’s vane position on the engine performance are discussed.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Caroline O’Keeffe ◽  
Laura Rhian Pickard ◽  
Juan Cao ◽  
Giuliano Allegri ◽  
Ivana K. Partridge ◽  
...  

AbstractConventional carbon fibre laminates are known to be moderately electrically conductive in-plane, but have a poor through-thickness conductivity. This poses a problem for functionality aspects that are of increasing importance to industry, such as sensing, current collection, inductive/resistive heating, electromagnetic interference (EMI) shielding, etc. This restriction is of course more pronounced for non-conductive composite reinforcements such as glass, organic or natural fibres. Among various solutions to boost through-thickness electrical conductivity, tufting with hybrid micro-braided metal-carbon fibre yarns is one of the most promising. As a well-characterised method of through thickness reinforcement, tufting is easily implementable in a manufacturing environment. The hybridisation of materials in the braid promotes the resilience and integrity of yarns, while integrating metal wires opens up a wide range of multifunctional applications. Many configurations can be produced by varying braid patterns and the constituting yarns/wires. A predictive design tool is therefore necessary to select the right material configuration for the desired functional and structural performance. This paper suggests a fast and robust method for generating finite-element models of the braids, validates the prediction of micro-architecture and electrical conductivity, and demonstrates successful manufacturing of composites enhanced with braided tufts.


2001 ◽  
Author(s):  
Akiko Kawamoto ◽  
Yukio Takahashi ◽  
Takaaki Koiken ◽  
Fusayoshi Nakamura

Author(s):  
Juri Bellucci ◽  
Federica Sazzini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Lorenzo Arcangeli ◽  
...  

This paper focuses on the use of the CFD for improving a steam turbine preliminary design tool. Three-dimensional RANS analyses were carried out in order to independently investigate the effects of profile, secondary flow and tip clearance losses, on the efficiency of two high-pressure steam turbine stages. The parametric study included geometrical features such as stagger angle, aspect ratio and radius ratio, and was conducted for a wide range of flow coefficients to cover the whole operating envelope. The results are reported in terms of stage performance curves, enthalpy loss coefficients and span-wise distribution of the blade-to-blade exit angles. A detailed discussion of these results is provided in order to highlight the different aerodynamic behavior of the two geometries. Once the analysis was concluded, the tuning of a preliminary steam turbine design tool was carried out, based on a correlative approach. Due to the lack of a large set of experimental data, the information obtained from the post-processing of the CFD computations were applied to update the current correlations, in order to improve the accuracy of the efficiency evaluation for both stages. Finally, the predictions of the tuned preliminary design tool were compared with the results of the CFD computations, in terms of stage efficiency, in a broad range of flow coefficients and in different real machine layouts.


2021 ◽  
pp. 28-32
Author(s):  
VALERIY L. CHUMAKOV ◽  

The paper shows some ways to improve the environmental characteristics of a diesel engine using gaseous hydrocarbon fuel and operating the engine in a gas-diesel cycle mode. Some possibilities to reduce toxic components of exhaust gases in a gas-diesel engine operating on liquefi ed propane-butane mixtures have been studied. Experiments carried out in a wide range of load from 10 to 100% and speed from 1400 to 2000 rpm showed that the gas-diesel engine provides a suffi ciently high level of diesel fuel replacement with gas hydrocarbon fuel. The authors indicate some eff ective ways to reduce the toxicity of exhaust gases. The engine power should be adjusted by the simultaneous supply of fuel, gas and throttling the air charge in the intake manifold. This method enriches the fi rst combusting portions to reduce nitrogen oxides and maintains the depletion of the main charge within the fl ammability limits of the gas-air charge to reduce carbon monoxide and hydrocarbons. The authors found that when the engine operates in a gas-diesel cycle mode, the power change provides a decrease in nitrogen oxide emissions of gas-diesel fuel only due to gas supply in almost the entire load range as compared to the pure diesel. At high loads (more than 80%) stable engine operation is ensured up to 90% of diesel fuel replaced by gas. Even at 10% of diesel fuel used the concentration of nitrogen oxides decreases by at least 15…20% as compared with a diesel engine in the entire load range. However, there is an increased emission of hydrocarbons and carbon monoxide in the exhaust gases. Further experimental studies have shown that optimization of the gas diesel regulation can reduce the mass emission of nitrogen oxides contained in exhaust gases in 2…3 times and greatly reduce the emission of incomplete combustion products – carbon monoxide and hydrocarbons.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Philip L. Andrew ◽  
Harika S. Kahveci

Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed—one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a boundary layer code, MISES, versus experimental data from a 2D linear cascade approximating the performance of a moderately loaded mid-pitch section from a modern aircraft high-pressure turbine. The validation versus measured loading, turning, and total pressure loss is presented for a range of exit Mach numbers from ≈0.5 to 1.2 and across a range of incidence from −10 deg to +14.5 deg relative to design incidence.


2021 ◽  
Vol 30 (4) ◽  
pp. 237-242
Author(s):  
Lilian Ricaud ◽  
Maxime Thibon ◽  
Laurent Marseault ◽  
Jean-Luc Chotte

Humanity is facing global and local sustainability challenges that call for the involvement of a wide range of expertise drawn from academia, civil society, the private sector, as well as funding and development agencies. The challenge will be to leverage this diversity to nurture decision making. To make such discussions successful we propose a pattern language approach. It can be used as a practical step-by-step process to guide interdisciplinary collaboration between researchers and to facilitate transdisciplinary interactions between the academic and nonacademic worlds. The patterns are documented and freely accessible online in the Sustainable Science Pattern database.


2001 ◽  
Vol 04 (01) ◽  
pp. 45-56 ◽  
Author(s):  
FILIPPO CASTIGLIONE

Financial forecasting is a difficult task due to the intrinsic complexity of the financial system. A simplified approach in forecasting is given by "black box" methods like neural networks that assume little about the structure of the economy. In the present paper we relate our experience using neural nets as financial time series forecast method. In particular we show that a neural net able to forecast the sign of the price increments with a success rate slightly above 50% can be found. Target series are the daily closing price of different assets and indexes during the period from about January 1990 to February 2000.


Sign in / Sign up

Export Citation Format

Share Document