Reduction of NOx in a Regenerative Industrial Furnace With the Addition of Methanol in the Fuel

2004 ◽  
Vol 126 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Q. Jiang ◽  
C. Zhang ◽  
J. Jiang

The analysis of the combustion process and NOx emission in a gas-fired regenerative industrial furnace has been carried out numerically. The effect of the additive, methanol CH3OH, to the fuel on the NOx emission is studied. A moment closure method with the assumed β Probability Density Function (PDF) for the mixture fraction is used to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The P-1 model is chosen as the radiation model, and the Weighted-Sum-of-Gray-Gases Model is used to calculate the absorption coefficient. The numerical results showed that the use of CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. The mechanism of NOx reduction by the use of CH3OH is also discussed.

2001 ◽  
Author(s):  
Qing Jiang ◽  
Chao Zhang

Abstract A study of the nitrogen oxides (NOx) emission and combustion process in a gas-fired regenerative, high temperature, low emission industrial furnace has been carried out numerically. The effect of two additives, methanol (CH3OH) and hydrogen peroxide (H2O2), to fuel on the NOx emission has been studied. A moment closure method with the assumed β probability density function (PDF) for mixture fraction is used in the present work to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The results showed that CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. However, H2O2 has no significant effect on the NOx emission.


2005 ◽  
Vol 129 (2) ◽  
pp. 134-143 ◽  
Author(s):  
Qing Jiang ◽  
Chao Zhang ◽  
Jin Jiang

Preliminary study has shown that the flue gas recirculation (FGR) is one of the effective ways to reduce the nitric oxides (NOx) emission in industrial furnaces. The sensitivity of the NOx emission from a FGR industrial furnace to the change in three major furnace input variables—inlet combustion air mass flow rate, inlet combustion air temperature, and pressure head of the FGR fan—is investigated numerically in this study. The investigation is carried out in frequency domain by superimposing sinusoidal signals of different frequencies on to the furnace control inputs around the design operating condition, and observing the frequency responses. The results obtained in this study can be used in the design of active combustion control systems to reduce NOx emission. The numerical simulation of the turbulent non-premixed combustion process in the furnace is conducted using a moment closure method with the assumed β probability density function for the mixture fraction. The combustion model is derived based on the assumption of instantaneous full chemical equilibrium. The discrete transfer radiation model is chosen as the radiation heat transfer model, and the weighted-sum-of-gray-gases model is used to calculate the absorption coefficient.


Author(s):  
Q. Jiang ◽  
C. Zhang ◽  
J. Jiang

Preliminary study has shown that the flue gas recirculation (FGR) is one of the effective ways to reduce the Nitric Oxides (NOx) emission in industrial furnaces. The research reported in this paper concentrates mainly on the development of dynamic models suitable for on-line and real-time feedback control to reduce the NOx emission in industrial furnaces with FGR. To construct an appropriate dynamic model, the relationship between the NOx emission and the furnace input variables, such as the inlet combustion air mass flow rate, inlet combustion air temperature, and the pressure head of the FGR fan, has been investigated. A moment closure method with the assumed β probability density function (PDF) for the mixture fraction is used to model the turbulent non-premixed combustion process in the furnace. The combustion model is derived based on the assumption of instantaneous full chemical equilibrium. The discrete transfer radiation model is chosen as the radiation heat transfer model, and the weighted-sum-of-gray-gases model is used to calculate the absorption coefficient.


1999 ◽  
Vol 122 (2) ◽  
pp. 287-293 ◽  
Author(s):  
C. Zhang ◽  
T. Ishii ◽  
Y. Hino ◽  
S. Sugiyama

A numerical procedure is presented to predict the turbulent non-premixed combustion flames in regenerative furnaces. A moment closure method with the assumed β probability density function (PDF) for the mixture fraction is used in the present work. The procedure is applied to an experimental regenerative slab reheat furnace developed in NKK to demonstrate its predictive capability. The predictions are compared with the experimental data. The comparison is favorable. [S0022-1481(00)01302-5]


2013 ◽  
Vol 634-638 ◽  
pp. 522-525 ◽  
Author(s):  
Yan Guang Chen ◽  
Hong Jing Han ◽  
Jia Lu ◽  
Dan Dan Li ◽  
Jin Lian Li ◽  
...  

A series of coke samples with loading alkali and alkaline earth metals were prepared by the impregnation method, the NOx emission were investigated in a silica fixed bed reactor in the combustion process of raw coke and coke modified by Na, K, Ca and Mg. The results show that Na, K, Ca and Mg play in-situ catalytic effects on the NOx reduction reactions. When the loading amount of Na2CO3 is 2.0%, the NOx reduction ratio was around 17.4%, when the loading of K2CO3 is 2.0%, the amount of NOx emission is reduced by 26.5%. When the loading of CaCl2 is 2.0%, the amount of NOx emission is reduced by 22.3%. When the loading of MgCl2 is 2.0%, the NOx reduction ratio is about 10.9%.


2019 ◽  
Vol 103 (4) ◽  
pp. 847-869 ◽  
Author(s):  
A. Giusti ◽  
E. Mastorakos

AbstractThe development of better laser-based experimental methods and the fast rise in computer power has created an unprecedented shift in turbulent combustion research. The range of species and quantities measured and the advent of kHz-level planar diagnostics are now providing great insights in important phenomena and applications such as local and global extinction, pollutants, and spray combustion that were hitherto unavailable. In simulations, the shift to LES allows better representation of the turbulent flow in complex geometries, but despite the fact that the grid size is smaller than in RANS, the push towards realistic conditions and the need to include more detailed chemistry that includes very fast species and thin reaction zones emphasize the necessity of a sub-grid turbulent combustion model. The paper discusses examples from current research with experiments and modelling that focus on flame transients (self-excited oscillations, local extinction), sprays, soot emissions, and on practical applications. These demonstrate how current models are being validated by experimental data and the concerted efforts the community is taking to promote the modelling tools to industry. In addition, the various coordinated International Workshops on non-premixed, premixed, and spray flames, and on soot are discussed and some of their target flames are explored. These comprise flames that are relatively simple to describe from a fluid mechanics perspective but contain difficult-to-model combustion problems such as extinction, pollutants and multi-mode reaction zones. Recently, swirl spray flames, which are more representative of industrial devices, have been added to the target flames. Typically, good agreement is found with LES and some combustion models such as the progress variable - mixture fraction flamelet model, the Conditional Moment Closure, and the Transported PDF method, but predicting soot emissions and the condition of complete extinction in complex geometries is still elusive.


2019 ◽  
Author(s):  
Jianming Xu ◽  
Xuexi Tie ◽  
Wei Gao ◽  
Yanfen Lin ◽  
Qingyan Fu

Abstract. The fine particles (PM2.5) in China decrease significantly in recent years as a result of the implement of Chinese Clean Air Action Plan since 2013, while the O3 pollution is getting worse, especially in megacities such as Beijing and Shanghai. Better understanding the elevated O3 pollution in Chinese megacities and its response to emission change is important for developing an effective emission control strategy in future. In this study, we analyze the significant increasing trend of O3 concentration from 2006 to 2015 in the megacity Shanghai with the variability of 1–1.3 ppbv yr-1. It is likely attributed to the notable reduction of NOx concentration with the decreasing rate of 1.86–2.15 ppbv yr-1 accompanied with the little change of VOCs during the same period excluding the weak trends of meteorological impacts on local dispersion (wind speed), regional transport (wind direction) and O3 photolysis (solar radiation). It is further illustrated by using a state of the art regional chemical/dynamical model (WRF-Chem) to explore the O3 variation response to the reduction of NOx emission in Shanghai. The control experiment conducted in September of 2009 shows very excellent performance for O3 and NOx simulations including both the spatial distribution pattern, and the day by day variation by comparing with 6 in-situ measurements from MIRAGE-shanghai field campaign. Sensitive experiments with 30 % reduction of NOx emission from 2009 to 2015 in Shanghai estimated by Shanghai Environmental Monitoring Center shows that the calculated O3 concentrations exhibit obvious enhancement by 4–7 ppbv in urban zones with the increasing variability of 0.96–1.06 ppbv yr-1, which is well consistent with the observed O3 trend as a result of the strong VOC-limited condition for O3 production. The large reduction of NOx combined with less change of VOCs during the past ten years promotes the O3 production in Shanghai to move towards NOx-limited regime. Further analysis of WRF-Chem experiments and O3 isopleths diagram suggests that the O3 production in downtown is still under VOC-limited regime after 2015 despite of the remarkable NOx reduction, while moves to the transition regime between NOx-limited and VOC-limited in sub-urban zones. Supposing the insignificant VOCs variation persists, the O3 concentration in downtown would keep increasing till 2020 with the further 20 % reduction of NOx emission after 2015 estimated by Shanghai Clean Air Action Plan. While there are less O3 change in other regions where the O3 production is not under VOC-limited regime. The O3 production in Shanghai will switch from VOC-limited to NOx-limited regime after 2020 except downtown area which is likely close to the transition regime. As a result the O3 concentration will decrease by 2–3 ppbv in sub-urban zones, and more than 4 ppbv in suburb response to 20 % reduction of NOx emission after 2020, whereas is not sensitive to both NOx and VOCs changes in downtown. This result reveals that the control strategy of O3 pollution is a very complex process, and needs to be carefully studied.


2004 ◽  
Vol 126 (1) ◽  
pp. 69-74 ◽  
Author(s):  
A. G. Chen ◽  
Daniel J. Maloney ◽  
William H. Day

An experimental investigation was carried out at DOE NETL on the humid air combustion process using liquid fuel to determine the effects of humidity on pollutant emissions and flame stability. Tests were conducted at pressures of up to 100 psia (690 kPa), and a typical inlet air temperature of 860°F (733 K). The emissions and RMS pressures were documented for a relatively wide range of flame temperature from 2440-3090°F (1610–1970 K) with and without added humidity. The results show more than 90% reduction of NOx through 10% humidity addition to the compressed air compared with the dry case at the same flame temperature. The substantial reduction of NOx is due to a shift in the chemical mechanisms and cannot be explained by flame temperature reduction due to added moisture since the comparison was made for the same flame temperature.


Author(s):  
Carlos Velez ◽  
Scott Martin ◽  
Aleksander Jemcov ◽  
Subith Vasu

The tabulated premixed conditional moment closure (T-PCMC) method has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes in Reynolds-averaged Navier–Stokes (RANS) environment by Martin et al. (2013, “Modeling an Enclosed, Turbulent Reacting Methane Jet With the Premixed Conditional Moment Closure Method,” ASME Paper No. GT2013-95092). Here, the premixed conditional moment closure (PCMC) method is extended to large eddy simulation (LES). The new model is validated with the turbulent, enclosed reacting methane backward facing step data from El Banhawy et al. (1983, “Premixed, Turbulent Combustion of a Sudden-Expansion Flow,” Combust. Flame, 50, pp. 153–165). The experimental data have a rectangular test section at atmospheric pressure and temperature with an inlet velocity of 10.5 m/s and an equivalence ratio of 0.9 for two different step heights. Contours of major species, velocity, and temperature are provided. The T-PCMC model falls into the class of table lookup turbulent combustion models in which the combustion model is solved offline over a range of conditions and stored in a table that is accessed by the computational fluid dynamic (CFD) code using three controlling variables: the reaction progress variable (RPV), variance, and local scalar dissipation rate. The local scalar dissipation rate is used to account for the affects of the small-scale mixing on the reaction rates. A presumed shape beta function probability density function (PDF) is used to account for the effects of subgrid scale (SGS) turbulence on the reactions. SGS models are incorporated for the scalar dissipation and variance. The open source CFD code OpenFOAM is used with the compressible Smagorinsky LES model. Velocity, temperature, and major species are compared to the experimental data. Once validated, this low “runtime” CFD turbulent combustion model will have great utility for designing the next generation of lean premixed (LPM) gas turbine combustors.


2017 ◽  
Vol 21 (suppl. 3) ◽  
pp. 597-615 ◽  
Author(s):  
Srdjan Belosevic ◽  
Ivan Tomanovic ◽  
Nenad Crnomarkovic ◽  
Aleksandar Milicevic

A cost-effective reduction of NOx emission from utility boilers firing pulverized coal can be achieved by means of combustion modifications in the furnace. It is also essential to provide the pulverized coal diffusion flame control. Mathematical modeling is regularly used for analysis and optimization of complex turbulent reactive flows and mutually dependent processes in coal combustion furnaces. In the numerical study, predictions were performed by an in-house developed comprehensive three-dimensional differential model of flow, combustion and heat/mass transfer with submodel of the fuel- and thermal-NO formation/ destruction reactions. Influence of various operating conditions in the case-study utility boiler tangentially fired furnace, such as distribution of both the fuel and the combustion air over the burners and tiers, fuel-bound nitrogen content and grinding fineness of coal were investigated individually and in combination. Mechanisms of NO formation and depletion were found to be strongly affected by flow, temperature and gas mixture components concentration fields. Proper modifications of combustion process can provide more than 30% of the NOx emission abatement, approaching the corresponding emission limits, with simultaneous control of the flame geometry and position within the furnace. This kind of complex numerical experiments provides conditions for improvements of the power plant furnaces exploitation, with respect to high efficiency, operation flexibility and low emission.


Sign in / Sign up

Export Citation Format

Share Document