The Numerical and Experimental Study of Non-Premixed Combustion Flames in Regenerative Furnaces

1999 ◽  
Vol 122 (2) ◽  
pp. 287-293 ◽  
Author(s):  
C. Zhang ◽  
T. Ishii ◽  
Y. Hino ◽  
S. Sugiyama

A numerical procedure is presented to predict the turbulent non-premixed combustion flames in regenerative furnaces. A moment closure method with the assumed β probability density function (PDF) for the mixture fraction is used in the present work. The procedure is applied to an experimental regenerative slab reheat furnace developed in NKK to demonstrate its predictive capability. The predictions are compared with the experimental data. The comparison is favorable. [S0022-1481(00)01302-5]

2001 ◽  
Author(s):  
Qing Jiang ◽  
Chao Zhang

Abstract A study of the nitrogen oxides (NOx) emission and combustion process in a gas-fired regenerative, high temperature, low emission industrial furnace has been carried out numerically. The effect of two additives, methanol (CH3OH) and hydrogen peroxide (H2O2), to fuel on the NOx emission has been studied. A moment closure method with the assumed β probability density function (PDF) for mixture fraction is used in the present work to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The results showed that CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. However, H2O2 has no significant effect on the NOx emission.


2004 ◽  
Vol 126 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Q. Jiang ◽  
C. Zhang ◽  
J. Jiang

The analysis of the combustion process and NOx emission in a gas-fired regenerative industrial furnace has been carried out numerically. The effect of the additive, methanol CH3OH, to the fuel on the NOx emission is studied. A moment closure method with the assumed β Probability Density Function (PDF) for the mixture fraction is used to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The P-1 model is chosen as the radiation model, and the Weighted-Sum-of-Gray-Gases Model is used to calculate the absorption coefficient. The numerical results showed that the use of CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. The mechanism of NOx reduction by the use of CH3OH is also discussed.


2020 ◽  
Vol 19 (1) ◽  
pp. 72
Author(s):  
B. P. Trevisan ◽  
W. M. C. Dourado

The evaluation, validation and development of the models used in computation fluid dynamics requires the availability of experimental data for which the boundary conditions, especially the conditions of the inlet flow, are well defined. Laser diagnostics techniques provide experimental data used in computational fluid dynamics and are a powerful tool for measurements of the mean properties and fluctuations of the turbulent flow because they are non-intrusive methods, with high repetition rate and high spatial and temporal resolution. Therefore, in the present work an experimental study of the inlet flow (inert and combusting flows) in a non-premixed combustion chamber is presented. The velocity measurements were carried out using a laser Doppler velocimeter at the entrance region of the combustion chamber. An asymmetry on the mean flow and an increase on the total velocity fluctuations with the increase of the equivalence ratio was observed. The major effect on the increase of the equivalence ratio was a presence of a coherent movement on large scales associated to the flame brush dynamics.


Author(s):  
Carlos Velez ◽  
Scott Martin ◽  
Aleksander Jemcov ◽  
Subith Vasu

The Tabulated Premixed Conditional Moment Closure Method (T-PCMC) has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes in a RANS environment [1]. Here the premixed conditional moment closure method is extended to Large Eddy Simulation. The new model is validated with the turbulent, enclosed reacting methane backward facing step data from El Banhawy [2]. The experimental data has a rectangular test section at atmospheric pressure and temperature with an inlet velocity of 10.5 m/s and an equivalence ratio of 0.9 for two different step heights. Contours of major species, velocity and temperature are provided. The T-PCMC model falls into the class of table lookup turbulent combustion models where the combustion model is solved offline over a range of conditions and stored in a table that is accessed by the CFD code using three controlling variables; the reaction progress variable, variance and local scalar dissipation rate. The local scalar dissipation is used to account for the affects of the small scale mixing on the reaction rates. A presumed shape beta function PDF is used to account for the effects of large scale turbulence on the reactions. Sub-grid scale models are incorporated for the scalar dissipation and variance. The open source CFD code OpenFOAM is used with the compressible Smagorinsky LES model. Velocity, temperature and major species are compared to the experimental data. Once validated, this “low runtime” CFD turbulent combustion model will have great utility for designing the next generation of lean premixed gas turbine combustors.


Author(s):  
Ivelin Kostov

In the work brought some experimental data of kinematic parameters of movement of cars forced idle, as the software product was used to diagnose 900 ATS, which recorded kinematic parameters of vehicle. On the basis of the conducted experimental research results are shown tabulated and analysed.


Author(s):  
André Perpignan V. de Campos ◽  
Fernando L. Sacomano Filho ◽  
Guenther C. Krieger Filho

Gas turbines are reliable energy conversion systems since they are able to operate with variable fuels and independently from seasonal natural changes. Within that reality, micro gas turbines have been increasing the importance of its usage on the onsite generation. Comparatively, less research has been done, leaving more room for improvements in this class of gas turbines. Focusing on the study of a flexible micro turbine set, this work is part of the development of a low cost electric generation micro turbine, which is capable of burning natural gas, LPG and ethanol. It is composed of an originally automotive turbocompressor, a combustion chamber specifically designed for this application, as well as a single stage axial power turbine. The combustion chamber is a reversed flow type and has a swirl stabilized combustor. This paper is dedicated to the diagnosis of the natural gas combustion in this chamber using computational fluid dynamics techniques compared to measured experimental data of temperature inside the combustion chamber. The study emphasizes the near inner wall temperature, turbine inlet temperature and dilution holes effectiveness. The calculation was conducted with the Reynolds Stress turbulence model coupled with the conventional β-PDF equilibrium along with mixture fraction transport combustion model. Thermal radiation was also considered. Reasonable agreement between experimental data and computational simulations was achieved, providing confidence on the phenomena observed on the simulations, which enabled the design improvement suggestions and analysis included in this work.


Author(s):  
Stefanie De Graaf ◽  
Ludovic de Guillebon ◽  
Marco Konle ◽  
W. Kendal Bushe

Abstract This paper considers a variation on Conditional Moment Closure (CMC) modelling for turbulence-chemistry interaction called the Uniform Conditional State (UCS) model and its application to the prediction of swirl-stabilized flames. UCS is essentially a zero-spatial dimensional, multi-condition CMC method. Unlike conventional CMC methods, for flames that are in (statistically) steady flows, the chemistry can be solved a priori in conditional space only. The reactive scalars are then mapped into real space by taking the inner product of the resulting conditional averages with the joint probability density function of the conditioning variables, here taken to have a presumed form that is a function of the mean and variance of the conditioning variables. Two conditioning variables are used, mixture fraction and progress variable. The combination of these allows for the resulting chemistry table to be applicable to both premixed and non-premixed combustion but also in the partially-premixed regime. In doing so, this new approach is promising to be highly suitable for simulating industrial applications and complex geometries. Another promising aspect is the universal applicability to different fuels and kinetic mechanisms providing great flexibility to the user of this method. Ultimately it is intended to aid the development of industrial burners by providing detailed information about the local composition and emission production, while keeping computational costs significantly low. Not only does this provide additional insight into global emissions and fuel consumption of a new design, but it allows for variability between different stages of mixedness as well as the testing of, for example, alternative fuels in established burner configurations. In this present study a comparison of different fuels and initial conditions is being conducted to analyze their effect on the resulting UCS solution — meaning the chemical source-terms, composition and thermodynamic state in conditional space. Furthermore the use of the UCS solutions as a predictive method in a RANS simulation is being presented here. The paper illustrates the UCS predictions and compares them to experimental data, as well as previously published simulation results of more established modelling approaches. The experimental test case chosen is a model combustor with a swirl-stabilized flame and high technical relevance which demonstrates the applicability of the UCS method to industrial designs for aero engines. Further investigations have begun including the application of this new tool to a real industrial combustor within the framework of this collaboration with MTU Aero Engines AG.


1935 ◽  
Vol 31 (8-9) ◽  
pp. 1112-1112

Analyzing clinical and experimental data on hypochloremia, the authors show that both during vomiting and when giving diuretica, it is not only about the loss of chlorine, but at the same time a large amount of water is lost.


Author(s):  
A. L. Lebedev ◽  
I. V. Avilina

Experimental study of kinetics of dissolution of hypso anhydrites at 25 ᵒC made it possible to formulate model of the process in the form of a balance equation for the kinetics of dissolution of gypsum, anhydrite (first and second orders, respectively) and kinetics of precipitation of gypsum (second order). The processing of the experimental data were carried out on the basis of the solution of the Riccati equation. When taking into account the common-ion effect on the solubility of gypsum and anhydrite, the calculated values turned out to be more comparable with the experimental ones.


Author(s):  
Sayed A. Nassar ◽  
Ramanathan M. Ranganathan ◽  
Saravanan Ganeshmurthy ◽  
Gary C. Barber

This experimental study investigates the effect of tightening speed and coating on both the torque – tension relationship and wear pattern in threaded fastener applications. The fastener torque – tension relationship is highly sensitive to normal variations in the coefficients of friction between threads and between the turning head and the surface of the joint. Hence, the initial level of the joint clamp load and the overall integrity and reliability of a bolted assembly is significantly influenced by the friction coefficients. The effect of repeated tightening and loosening is also investigated using M12, Class 8.8, fasteners with and without zinc coating. The torque – tension relationship is examined in terms of the non-dimensional nut factor K. The wear pattern is examined by monitoring the changes in surface roughness using a WYKO optical profiler and by using a LECO optical microscope. A Hitachi S-3200N Scanning Electron Microscope (SEM) is used to examine the contact surfaces, under the fastener head, after each tightening/loosening cycle. Experimental data on the effect of variables and the tightening speed, fastener coating and repeated tightening on the nut factor are presented and analyzed for M8 and M12, class 8.8, fasteners.


Sign in / Sign up

Export Citation Format

Share Document