Free Surface Flow in High Speed Fiber Drawing With Large-Diameter Glass Preforms

2004 ◽  
Vol 126 (5) ◽  
pp. 713-722 ◽  
Author(s):  
Zhiyong Wei ◽  
Kok-Meng Lee ◽  
Serge W. Tchikanda ◽  
Zhi Zhou ◽  
Siu-Ping Hong

This paper presents a complete two-dimensional (2D) thermofluid model for predicting the neck-down shape in the fiber drawing process. This model uses the controlled draw tension to calculate the Neumann boundary condition at the furnace exit; thus, it does not require specifying the speed (or diameter) of the fiber as most previous studies did. The model presented here can be applied to optimization of the high-speed draw process with large-diameter preforms. In this study, the radiative transfer equation is directly solved for the radiation fluxes using the discrete ordinate method coupled with the solution of the free surface flow, which does not assume that the glass is optically thick and does not neglect the glass absorption at the short-wavelength band. The artificial compressibility method is used to solve the Navier-Stokes equations. A staggered-grid computation scheme that is shown to be efficient and robust was used to reduce the computation load in solving the complete 2D model. The neck-down profile of a large preform (9 cm dia) drawn at a relatively high speed of 25 m/s was experimentally measured. The measured profile well matches that derived numerically. Results also show that the free surface calculated using the Dirichlet boundary condition deviates considerably from the measured profile, particularly near the furnace exit where the actual diameter (and, hence, the speed of the glass) is essentially unknown. Although the difference between the numerical results obtained from the full and semi-2D models was small, this difference could be significant if the location at which the glass converges to 125 μm dia is of interest, especially when the preform has a large diameter drawn at a high speed.

2012 ◽  
Vol 87 (5-6) ◽  
pp. 569-574 ◽  
Author(s):  
Sergej Gordeev ◽  
Volker Heinzel ◽  
Robert Stieglitz

Author(s):  
A. Ganguly ◽  
V. Shigunov ◽  
O. Turan

A finite volume method with a multiphase type free surface description is employed to calculate the flow around ships in shallow and restricted channels. The flows at critical and supercritical depth Froude numbers (Fnd = 1.0 and Fnd = 1.18) are calculated for Series–60 monohull and a medium speed catamaran. A steady state solution for Reynolds-averaged Navier-Stokes equations with a k-ε turbulence model is obtained by time marching. Computed wave profiles are in good agreement with model tests in the near field of the ship. The computed and measured resistance agree fairly well.


Author(s):  
Vedanth Srinivasan ◽  
De Ming Wang

This paper presents a numerical method that couples the incompressible Navier-Stokes equations with the Volume of Fluid method in a Cartesian co-ordinate system for tracking immiscible interfaces in multiple dimensions. The governing equations are discretized based on a finite volume method on a non-staggered fixed grid. The free surface flow problem is solved as a single phase flow system in which the free surface is captured using a Switching Technique for Advection and Capturing of Surfaces (STACS) scheme. The effects of surface tension at the interfaces are treated using a Continuum Surface Force (CSF) model. The pressure velocity coupling is achieved using a SIMPLE strategy. The coupled system, implemented in the commercial CFD software, AVL FIRE/SWIFT, is applied to a two dimensional dam breaking problem. The simulation results reveal a multitude of phenomena such as, free surface vortex generation, air entrapment and splashing of the liquid surge front. The computational results are in good agreement with experimental data, wherever available. The effects of time and grid resolution on the solution behavior are elaborated in detail. Different convection schemes are tested and the current method is compared to another existing interface capturing methodology.


Volume 3 ◽  
2004 ◽  
Author(s):  
Zhiyong Wei ◽  
Kok-Meng Lee ◽  
Zhi Zhou ◽  
Siu-Ping Hong

This paper presents a computational model for predicting the location at which the glass fiber solidifies during a high-speed drawing process. Although modeling of the optic fiber drawing process has been of interest for the past two decades, traditional fiber drawing process uses small diameter preforms and low draw speeds, where the glass usually solidifies and turns into fiber inside the furnace. Much larger preforms drawn at higher speeds have been used in the state-of-the-art fiber drawing systems to improve production efficiency and reduce cost. Insulated post-chambers are often added below the furnace to reduce the glass cooling rate so that the optical loss in the fiber is low. To provide a basis for design optimization of the post-chamber, we have solved the conjugate problem of the glass free surface flow and the air convection to determine the location where the glass solidifies. As radiation is the dominant mode of heat transfer in the glass, the radiative transfer equation (RTE) is solved directly by discrete ordinate method (DOM). The heat flux due to the mixed convection of the air is also numerically calculated along the glass free surface, which involves the boundary layer flow around a continuously moving fiber and the buoyancy driven flow through the open-ended channel. The calculated free shapes are compared against the experimentally measured data to verify the computational model.


2005 ◽  
Vol 73 (6) ◽  
pp. 940-947 ◽  
Author(s):  
Cassio M. Oishi ◽  
José A. Cuminato ◽  
Valdemir G. Ferreira ◽  
Murilo F. Tomé ◽  
Antonio Castelo ◽  
...  

The present work is concerned with a semi-implicit modification of the GENSMAC method for solving the two-dimensional time-dependent incompressible Navier-Stokes equations in primitive variables formulation with a free surface. A projection method is employed to uncouple the velocity components and pressure, thus allowing the solution of each variable separately (a segregated approach). The viscous terms are treated by the implicit backward method in time and a centered second order method in space, and the nonlinear convection terms are explicitly approximated by the high order upwind variable-order nonoscillatory scheme method in space. The boundary conditions at the free surface couple the otherwise segregated velocity and pressure fields. The present work proposes a method that allows the segregated solution of free surface flow problems to be computed by semi-implicit schemes that preserve the stability conditions of the related coupled semi-implicit scheme. The numerical method is applied to both the simulation of free surface and to confined flows. The numerical results demonstrate that the present technique eliminates the parabolic stability restriction required by the original explicit GENSMAC method, and also found in segregated semi-implicit methods with time-lagged boundary conditions. For low Reynolds number flows, the method is robust and very efficient when compared to the original GENSMAC method.


Sign in / Sign up

Export Citation Format

Share Document