Configuration Bifurcations Analysis of Six Degree-of-Freedom Symmetrical Stewart Parallel Mechanisms

2005 ◽  
Vol 127 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Yu-Xin Wang ◽  
Yi-Ming Wang

The configuration bifurcations of Stewart parallel manipulators at singular positions induce the uncertainty of the moving trends of the manipulative platform. The Jacobian matrix method can determine the singular position of Stewart manipulators, but it cannot determine the configuration variation trend in the vicinity of the singular position. In order to investigate the concrete motion behaviors of the Stewart parallel manipulator at singular positions, we construct the algorithm for determining all the configuration branches and bifurcation points. Through detailed investigations of configuration bifurcation characteristics, we have found that with a decrease of the extensible legs’ length, the bifurcation points of configuration branches of the movable platform get together gradually and the bifurcation type changes from turning to dual-point bifurcation, and then, finally, it becomes multiple-point bifurcation.

Author(s):  
C. Gosselin

Abstract This paper presents an algorithm for the determination of the workspace of parallel manipulators. The method described here, which is based on geometrical properties of the workspace, leads to a simple graphical representation of the regions of the three-dimensional Cartesian space that are attainable by the manipulator with a given orientation of the platform. Moreover, the volume of the workspace can be easily computed by performing an integration on its boundary, which is obtained from the algorithm. Examples are included to illustrate the application of the method to a six-degree-of-freedom fully-parallel manipulator.


Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


Author(s):  
Clement M. Gosselin ◽  
Rémi Ricard ◽  
Meyer A. Nahon

Abstract This paper presents a study of the workspace and kinematic properties of four different architectures of six-degree-of-freedom parallel mechanisms. For each architecture, the volume of the Cartesian workspace is computed at different orientations of the moving platform. The distribution of the workspace is also found by computing the 2D sections of the 3D workspace. The rotational workspace is then determined at the reference position of the platform. Finally, the stiffness properties of the architectures are obtained. Normalization factors are then defined to account for the structural differences between the architectures of mechanisms. The comparison of the different architectures of parallel mechanisms has been performed using SIMPA, a specialized CAD tool developed for the kinematic analysis and optimization of parallel manipulators. The results thus obtained illustrate the range of performance which can be expected from different parallel architectures. Although none of the architectures proves to be better than all the others in all respects, particular architectures do excel in particular performance measures. The approach proposed would therefore be useful in further studies relating to the design and optimization of parallel manipulators and mechanisms.


2004 ◽  
Vol 126 (6) ◽  
pp. 959-968 ◽  
Author(s):  
Mahir Hassan ◽  
Leila Notash

In this study, the effect of active joint failure on the mobility, velocity, and static force of parallel robot manipulators is investigated. Two catastrophic active joint failure types are considered: joint jam and actuator force loss. To investigate the effect of failure on mobility, the Gru¨bler’s mobility equation is modified to take into account the kinematic constraints imposed by various branches in the manipulator. In the case of joint jam, the manipulator loses the ability to move and apply force in a specific portion of its task space; while in the case of actuator force loss, the manipulator gains an unconstrained motion in a specific portion of the task space in which an externally applied force cannot be resisted by the actuator forces. The effect of joint jam and actuator force loss on the velocity and on the force capabilities of parallel manipulators is investigated by examining the change in the Jacobian matrix, its inverse, and transposes. It is shown that the reduced velocity and force capabilities after joint jam and loss of actuator force could be determined using the null space vectors of the transpose of the Jacobian matrix and its inverse. Computer simulation is conducted to demonstrate the application of the developed methodology in determining the post-failure trajectory of a 3-3 six-degree-of-freedom Stewart-Gough manipulator, when encountering active joint jam and actuator force loss.


Author(s):  
Yu-Tong Li ◽  
Yu-Xin Wang

Kinematic parameters have significant influences on the motion stability of parallel manipulators at singular configureations. Taking the plane 3-RPR parallel manipulator as an example, the motion stability at different types of singular configurations corresponding to the angular speed and velocity of the movable platform are investigated. At first, the second order of uncoupled dynamics equation for the 3-RPR parallel manipulator is established with the aid of the second class Lagrange approach. According to the Lyapunov first approximate stability criterion, the approximate conditions for the 3-RPR parallel manipulator with a stabile motion at singular configurations are determined based on the Gerschgorin circle theorem. Next, the exact Hurwitz criterion is utilized to study the motion stability and the load capability of the manipulator corresponding to the angular speed and velocity of the movable platform, as well as the directions of the external forces at two kinds of singular configurations: with a gained rotation-type DOF, and with a gained translation-type DOF, respectively. The results show that increasing both the angular speed and the velocity of the mass center of the movable platform can efficiently improve the motion stability of the 3-RPR parallel manipulator at singular configurations.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Semaan Amine ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro ◽  
Philippe Wenger ◽  
Clément Gosselin

This paper deals with the singularity analysis of parallel manipulators with identical limb structures performing Schönflies motions, namely, three independent translations and one rotation about an axis of fixed direction (3T1R). Eleven architectures obtained from a recent type synthesis of such manipulators are analyzed. The constraint analysis shows that these architectures are all overconstrained and share some common properties between the actuation and the constraint wrenches. The singularities of such manipulators are examined through the singularity analysis of the 4-RUU parallel manipulator. A wrench graph representing the constraint wrenches and the actuation forces of the manipulator is introduced to formulate its superbracket. Grassmann–Cayley Algebra is used to obtain geometric singularity conditions. Based on the concept of wrench graph, Grassmann geometry is used to show the rank deficiency of the Jacobian matrix for the singularity conditions. Finally, this paper shows the general aspect of the obtained singularity conditions and their validity for 3T1R parallel manipulators with identical limb structures.


2006 ◽  
Vol 129 (11) ◽  
pp. 1161-1169 ◽  
Author(s):  
Yi Lu ◽  
Bo Hu

Some parallel manipulators with n spherical joint-prismatic joint-spherical joint (SPS)-type active legs and a passive constrained leg possess a larger capability of load bearing and are simple in structure of the active leg. In this paper, a unified and simple approach is proposed for solving Jacobian∕Hessian matrices and inverse∕forward velocity and acceleration of this type of parallel manipulators. First, a general parallel manipulator with n SPS-type active legs and one passive constrained leg in various possible serial structure is synthesized, and some formulae for solving the poses of constrained force∕torque and active∕constrained force matrix are derived. Second, the formulae for solving extension of active legs, the auxiliary velocity∕acceleration equation are derived. Third, the formulae for solving inverse∕forward velocity and acceleration and a Jacobian matrix without the first-order partial differentiation and a Hessian matrix without the second-order partial differentiation are derived. Finally, the procedure is applied to three parallel manipulators with four and five SPS-type active legs and one passive constrained leg in different serial structures and to illustrate.


2014 ◽  
Vol 6 (4) ◽  
Author(s):  
J. Jesús Cervantes-Sánchez ◽  
J. M. Rico-Martínez ◽  
V. H. Pérez-Muñoz

This paper introduces two novel dexterity indices, namely, angularity and axiality, which are used to estimate the motion sensitivity of the mobile platform of a parallel manipulator undergoing a general motion involving translation and rotation. On the one hand, the angularity index can be used to measure the sensitivity of the mobile platform to change in rotation. On the other hand, the axiality index can be used to measure the sensitivity of the operation point (OP) of the mobile platform to change in translation. Since both indices were inspired by very fundamental concepts of classical kinematics (angular velocity vector and helicoidal velocity field), they offer a clear and simple physical insight, which is expected to be meaningful to the designer of parallel manipulators. Moreover, the proposed indices do not require obtaining a dimensionally homogeneous Jacobian matrix, nor do they depend on having similar types of actuators in each manipulator's leg. The details of the methodology are illustrated by considering a classical parallel manipulator.


Author(s):  
Mansour Abtahi ◽  
Hodjat Pendar ◽  
Aria Alasty ◽  
Gholamreza Vossoughi

In the past few years, parallel manipulators have become increasingly popular in industry, especially, in the field of machine tools. Hexaglide is a 6 DOF parallel manipulator that can be used as a high speed milling machine. In this paper, the kinematics and singularity of Hexaglide parallel manipulator are studied systematically. At first, this robot has been modeled and its inverse and forward kinematic problems have been solved. Then, formulas for solving inverse velocity are derived and Jacobian matrix is obtained. After that, three different types of singularity for this type of robot have been investigated. Finally a numerical example is presented.


Author(s):  
Ste´phane Caro ◽  
Nicolas Binaud ◽  
Philippe Wenger

This paper deals with the sensitivity analysis of planar parallel manipulators. A methodology is introduced to derive the sensitivity coefficients by means of the study of 3-RPR manipulators. As a matter of fact, the sensitivity coefficients of the pose of its moving platform to variations in the geometric parameters are expressed algebraically, the variations being defined both in Polar and Cartesian coordinates. The dexterity of the manipulator is also studied by means of the conditioning number of its normalized kinematic Jacobian matrix. As an illustrative example, the sensitivity of a symmetrical planar parallel manipulator is analyzed in detail. Finally, the accuracy of the manipulator is compared with its dexterity.


Sign in / Sign up

Export Citation Format

Share Document