Experimental Investigation of the Elastic–Plastic Contact Area and Static Friction of a Sphere on Flat

2005 ◽  
Vol 127 (1) ◽  
pp. 47-50 ◽  
Author(s):  
I. Etsion ◽  
O. Levinson ◽  
G. Halperin ◽  
M. Varenberg

An experimental investigation is presented to evaluate recently published models for the contact and sliding inception of a deformable sphere loaded against a smooth rigid flat. The effects of the normal load on the contact area, junction growth, and the static friction force in the elastic–plastic contact regime are presented. Very good correlation is found between the predicted and measured contact area. A dramatic decrease of the static friction coefficient with increasing normal loading is observed, similar to the trend predicted by the model. The quantitative agreement is, however, less satisfying. Some possible reasons for the poor agreement are pointed out.

Author(s):  
Ofer Levinson ◽  
Izhak Etsion ◽  
Grigori Halperin

An experimental investigation is presented to evaluate recently published models for the contact and sliding inception of a deformable sphere loaded against a smooth rigid flat. The effects of the normal load on the contact area, junction growth, and the static friction force in the elastic-plastic contact regime are presented. Very good correlation is found between the predicted and measured contact area. A dramatic decrease of the static friction coefficient with increasing normal loading is observed, similar to the trend predicted by the model. The quantitative agreement is, however, less satisfying. Some possible reasons for the poor agreement are pointed out.


Author(s):  
Andrey Ovcharenko ◽  
Gregory Halperin ◽  
Izhak Etsion

The elastic-plastic contact between a deformable sphere and a rigid flat during pre-sliding is studied experimentally. Measurements of friction force and contact area are done in real time along with an accurate identification of the instant of sliding inception. The static friction force and relative tangential displacement are investigated over a wide range of normal preloads for several sphere materials and diameters. It is found that at low normal loads the static friction coefficient depends on the normal load in breach of the classical laws of friction. The pre-sliding displacement is found to be less than 5 percent of the contact diameter, and the interface mean shear stress at sliding inception is found to be slightly below the shear strength of the sphere material. Good correlation is found between the present experimental results and a recent theoretical model in the elastic-plastic regime of deformation.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
A. Ovcharenko ◽  
G. Halperin ◽  
I. Etsion

The elastic-plastic contact between a deformable sphere and a rigid flat during presliding is studied experimentally. Measurements of friction force and contact area are done in real time along with an accurate identification of the instant of sliding inception. The static friction force and relative tangential displacement are investigated over a wide range of normal preloads for several sphere materials and diameters. Different behavior of the static friction is observed in the elastic and in the elastic-plastic regimes of sphere deformation. It is found that at low normal loads, the static friction coefficient depends on the normal load in breach of the classical laws of friction. The presliding displacement is found to be less than 5% of the contact diameter, and the interface mean shear stress at sliding inception is found to be slightly below the shear strength of the sphere material. Good correlation is found between the present experimental results and a recent theoretical model in the elastic-plastic regime of deformation.


Author(s):  
Andrey Ovcharenko ◽  
Gregory Halperin ◽  
Izhak Etsion

The elastic-plastic contact between a deformable sphere and a rigid flat during pre-sliding is studied experimentally. Measurements of friction force and contact area are done in real time along with an accurate identification of the instant of sliding inception. The static friction force and relative tangential displacement are investigated over a wide range of normal preloads for several sphere materials and diameters. It is found that at low normal loads the static friction coefficient depends on the normal load in breach of the classical laws of friction. The pre-sliding displacement is found to be less than 5 percent of the contact diameter, and the interface mean shear stress at sliding inception is found to be slightly below the shear strength of the sphere material. Good correlation is found between the present experimental results and a recent theoretical model in the elastic-plastic regime of deformation.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wujiu Pan ◽  
Xiaopeng Li ◽  
Xue Wang

Purpose The purpose of this paper is to provide a static friction coefficient prediction model of rough contact surfaces based on the contact mechanics analysis of elastic-plastic fractal surfaces. Design/methodology/approach In this paper, the continuous deformation stage of the multi-scale asperity is considered, i.e. asperities on joint surfaces go through three deformation stages in succession, the elastic deformation, the elastic-plastic deformation (the first elastic-plastic region and the second elastic-plastic region) and the plastic deformation, rather than the direct transition from the elastic deformation to the plastic deformation. In addition, the contact between rough metal surfaces should be the contact of three-dimensional topography, which corresponds to the fractal dimension D (2 < D < 3), not two-dimensional curves. So, in consideration of the elastic-plastic deformation mechanism of asperities and the three-dimensional topography, the contact mechanics of the elastic-plastic fractal surface is analyzed, and the static friction coefficient nonlinear prediction model of the surface is further established. Findings There is a boundary value between the normal load and the fractal dimension. In the range smaller than the boundary value, the normal load decreases with fractal dimension; in the range larger than the boundary value, the normal load increases with fractal dimension. Considering the elastic-plastic deformation of the asperity on the contact surface, the total normal contact load is larger than that of ignoring the elastic-plastic deformation of the asperity. There is a proper fractal dimension, which can make the static friction of the contact surface maximum; there is a negative correlation between the static friction coefficient and the fractal scale coefficient. Originality/value In the mechanical structure, the research and prediction of the static friction coefficient characteristics of the interface will lay a foundation for the understanding of the mechanism of friction and wear and the interaction relationship between contact surfaces from the micro asperity-scale level, which has an important engineering application value.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
D. Cohen ◽  
Y. Kligerman ◽  
I. Etsion

A model for elastic-plastic nominally flat contacting rough surfaces under combined normal and tangential loading with full stick contact condition is presented. The model incorporates an accurate finite element analysis for contact and sliding inception of a single elastic-plastic asperity in a statistical representation of surface roughness. It includes the effect of junction growth and treats the sliding inception as a failure mechanism, which is characterized by loss of tangential stiffness. A comparison between the present model and a previously published friction model shows that the latter severely underestimates the maximum friction force by up to three orders of magnitude. Strong effects of the normal load, nominal contact area, mechanical properties, and surface roughness on the static friction coefficient are found, in breach of the classical laws of friction. Empirical equations for the maximum friction force, static friction coefficient, real contact area due to the normal load alone and at sliding inception as functions of the normal load, material properties, and surface roughness are presented and compared with some limited available experimental results.


2007 ◽  
Vol 129 (4) ◽  
pp. 754-760 ◽  
Author(s):  
Chul-Hee Lee ◽  
Andreas A. Polycarpou

An experimental study was conducted to measure the static friction coefficient under constant normal load and different interface conditions. These include surface roughness, dwell time, displacement rate, as well as the presence of traces of lubricant and wear debris at the interface. The static friction apparatus includes accurate measurement of friction, normal and lateral forces at the interface (using a high dynamic bandwidth piezoelectric force transducer), as well as precise motion control and measurement of the sliding mass. The experimental results show that dry surfaces are more dependent on the displacement rate prior to sliding inception compared to boundary lubricated surfaces in terms of static friction coefficient. Also, the presence of wear debris, boundary lubrication, and rougher surfaces decrease the static friction coefficient significantly compared to dry smooth surfaces. The experimental measurements under dry unlubricated conditions were subsequently compared to an improved elastic-plastic static friction model, and it was found that the model captures the experimental measurements of dry surfaces well in terms of the surface roughness.


1993 ◽  
Vol 115 (3) ◽  
pp. 406-410 ◽  
Author(s):  
I. Etsion ◽  
M. Amit

The effect of normal loading on the static friction coefficient between smooth metallic surfaces is experimentally investigated. Normal loads in the range of 10−3N to 0.3N were applied to small diameter samples made of three different aluminum alloys and contacting a nickel coated surface. The tests were done under controlled humidity and clean air conditions. A dramatic increase in the static friction coefficient was observed as the normal load was reduced to its lower level. This behavior is attributed to the role played by adhesion forces which are more pronounced at small normal loads and smooth surfaces and is in agreement with recent theoretical analyses.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Rebecca D. Ibrahim Dickey ◽  
Robert L. Jackson ◽  
George T. Flowers

A new experimental apparatus is used to measure the static friction between tin surfaces under various loads. After the data is collected it is then compared to an existing theoretical model. The experiment uses the classical physics technique of increasing the incline of a plane and block until the block slides. The angle at the initiation of sliding is used to find the static friction coefficient. The experiment utilizes an automated apparatus to minimize human error. The finite element based statistical rough surface contact model for static friction under full stick by Li, Etsion, and Talke (2010, “Contact Area and Static Friction of Rough Surfaces with High Plasticity Index,” ASME Journal of Tribology, 132(3), p. 031401) is used to make predictions of the friction coefficient using surface profile data from the experiment. Comparison of the computational and experimental methods shows similar qualitative trends, and even some quantitative agreement. After adjusting the results for the possible effect of the native tin oxide film, the theoretical and experimental results can be brought into reasonable qualitative and quantitative agreement.


2019 ◽  
Vol 10 (1) ◽  
pp. 253-273 ◽  
Author(s):  
Ilya Svetlizky ◽  
Elsa Bayart ◽  
Jay Fineberg

Contacting bodies subjected to sufficiently large applied shear will undergo frictional sliding. The onset of this motion is mediated by dynamically propagating fronts, akin to earthquakes, that rupture the discrete contacts that form the interface separating the bodies. Macroscopic motion commences only after these ruptures have traversed the entire interface. Comparison of measured rupture dynamics with the detailed predictions of fracture mechanics reveals that the propagation dynamics, dissipative properties, radiation, and arrest of these “laboratory earthquakes” are in excellent quantitative agreement with the predictions of the theory of brittle fracture. Thus, interface fracture replaces the idea of a characteristic static friction coefficient as a description of the onset of friction. This fracture-based description of friction additionally provides a fundamental description of earthquake dynamics and arrest.


Sign in / Sign up

Export Citation Format

Share Document