scholarly journals A Temperature-based Controller for a Shape Memory Alloy Actuator

2005 ◽  
Vol 127 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Mohammad H. Elahinia ◽  
Hashem Ashrafiuon ◽  
Mehdi Ahmadian ◽  
Hanghao Tan

This paper presents a robust nonlinear control that uses a state variable estimator for control of a single degree of freedom rotary manipulator actuated by shape memory alloy (SMA) wire. A model for SMA actuated manipulator is presented. The model includes nonlinear dynamics of the manipulator, a constitutive model of the shape memory alloy, and the electrical and heat transfer behavior of SMA wire. The current experimental setup allows for the measurement of only one state variable which is the angular position of the arm. Due to measurement difficulties, the other three state variables, arm angular velocity and SMA wire stress and temperature, cannot be directly measured. A model-based state estimator that works with noisy measurements is presented based on the extended Kalman filter (EKF). This estimator estimates the state vector at each time step and corrects its estimation based on the angular position measurements. The estimator is then used in a nonlinear and robust control algorithm based on variable structure control (VSC). The VSC algorithm is a control gain switching technique based on the arm angular position (and velocity) feedback and EKF estimated SMA wire stress and temperature. Using simulation it is shown that the state vector estimates help reduce or avoid the undesirable and inefficient overshoot problem in SMA one-way actuation control.

Author(s):  
Mohammad H. Elahinia ◽  
Hashem Ashrafiuon ◽  
Mehdi Ahmadian ◽  
Daniel J. Inman

This paper presents a robust nonlinear control that uses a state variable estimator for control of a single degree of freedom rotary manipulator actuated by Shape Memory Alloy (SMA) wire. A model for SMA actuated manipulator is presented. The model includes nonlinear dynamics of the manipulator, a constitutive model of the Shape Memory Alloy, and the electrical and heat transfer behavior of SMA wire. The current experimental setup allows for the measurement of only one state variable which is the angular position of the arm. Due to measurement difficulties, the other three state variables, arm angular velocity and SMA wire stress and temperature, cannot be directly measured. A model-based state estimator that works with noisy measurements is presented based on the Extended Kalman Filter (EKF). This estimator predicts the state vector at each time step and corrects its prediction based on the angular position measurements. The estimator is then used in a nonlinear and robust control algorithm based on Variable Structure Control (VSC). The VSC algorithm is a control gain switching technique based on the arm angular position (and velocity) feedback and EKF estimated SMA wire stress and temperature. The state vector estimates help reduce or avoid the undesirable and inefficient overshoot problem in SMA one-way actuation control.


Author(s):  
Mohammad H. Elahinia ◽  
Hashem Ashrafiuon ◽  
Mehdi Ahmadian ◽  
William T. Baumann

This paper presents an Extended Kalman Filter (EKF) for estimation of the state variables of a single degree of freedom rotary manipulator actuated by Shape Memory Alloy (SMA). A state space model for the SMA manipulator is presented. The model includes nonlinear dynamics of the manipulator, constitutive model of Shape Memory Alloy, and the electrical and heat transfer behavior of SMA wire. In the experimental setup, angular position of the arm is the only state variable that is measured. The other state variables of the system are arm’s angular velocity, SMA wire’s stress, temperature and the Martensite factor, which are not available experimentally due to measurement difficulties. Hence, a model-based state estimator that works with noisy measurements is presented based on the Extended Kalman Filter. This estimator predicts the state vector at each time step and corrects its prediction based on the angular position of the arm which can be measured experimentally. The state variables collected through model simulations are also used to evaluate the performance of the EKF. Several EKF simulations are presented that show accurate, and robust performance of the estimator for different types of inputs.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Andres Osorio Salazar ◽  
Yusuke Sugahara ◽  
Daisuke Matsuura ◽  
Yukio Takeda

In this paper, the concept of scalability for actuators is introduced and explored, which is the capability to freely change the output characteristics on demand: displacement and force for a linear actuator, angular position and torque for a rotational actuator. This change can either be used to obtain power improvement (with a constant scale factor), or to improve the usability of a robotic system according to variable conditions (with a variable scale factor). Some advantages of a scalable design include the ability to adapt to changing environments, variable resolution of step size, ability to produce designs that are adequate for restricted spaces or that require strict energy efficiency, and intrinsically safe systems. Current approaches for scalability in actuators have shortcomings: the method to achieve scalability is complex, so obtaining a variable scaling factor is challenging, or they cannot scale both output characteristics simultaneously. Shape Memory Alloy (SMA) wire-based actuators can overcome these limitations, because its two output characteristics, displacement and force, are physically independent from each other. In this paper we present a novel design concept for linear scalable actuators that overcome SMA design and scalability limitations by using a variable number of SMA wires mechanically in parallel, immersed in a liquid that transmits heat from a separate heat source (wet activation). In this concept, more wires increase the maximum attainable force, and longer wires increase the maximum displacement. Prototypes with different number of SMA wires were constructed and tested in isometric experiments to determine force vs. temperature behavior and time response. The heat-transmitting liquid was either static or flowing using pumps. Scalability was achieved with a simple method in all tested prototypes with a linear correlation of maximum force to number of SMA wires. Flowing heat transmission achieved higher actuation bandwidth.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 219 ◽  
Author(s):  
Alberto Sanchez ◽  
Elías Todorovich ◽  
Angel de Castro

As the performance of digital devices is improving, Hardware-In-the-Loop (HIL) techniques are being increasingly used. HIL systems are frequently implemented using FPGAs (Field Programmable Gate Array) as they allow faster calculations and therefore smaller simulation steps. As the simulation step is reduced, the incremental values for the state variables are reduced proportionally, increasing the difference between the current value of the state variable and its increments. This difference can lead to numerical resolution issues when both magnitudes cannot be stored simultaneously in the state variable. FPGA-based HIL systems generally use 32-bit floating-point due to hardware and timing restrictions but they may suffer from these resolution problems. This paper explores the limits of 32-bit floating-point arithmetics in the context of hardware-in-the-loop systems, and how a larger format can be used to avoid resolution problems. The consequences in terms of hardware resources and running frequency are also explored. Although the conclusions reached in this work can be applied to any digital device, they can be directly used in the field of FPGAs, where the designer can easily use custom floating-point arithmetics.


Author(s):  
Eric Donald Dongmo ◽  
Kayode Stephen Ojo ◽  
Paul Woafo ◽  
Abdulahi Ndzi Njah

This paper introduces a new type of synchronization scheme, referred to as difference synchronization scheme, wherein the difference between the state variables of two master [slave] systems synchronizes with the state variable of a single slave [master] system. Using the Lyapunov stability theory and the active backstepping technique, controllers are derived to achieve the difference synchronization of three identical hyperchaotic Liu systems evolving from different initial conditions, as well as the difference synchronization of three nonidentical systems of different orders, comprising the 3D Lorenz chaotic system, 3D Chen chaotic system, and the 4D hyperchaotic Liu system. Numerical simulations are presented to demonstrate the validity and feasibility of the theoretical analysis. The development of difference synchronization scheme has increases the number of existing chaos synchronization scheme.


Author(s):  
Yavuz Eren ◽  
Constantinos Mavroidis ◽  
Jason Nikitczuk

In this paper we present a novel controller for Shape Memory Alloy (SMA) actuated robotic systems. The new controller, called BAC (B-spline based Adaptive Control), is based on a hybrid combination of gain scheduling, B-spline approximation, variable structure control and integral control. The proposed controller shows excellent positioning accuracy and speed throughout the full range of motion of a SMA actuated robotic system in large-scale applications. To demonstrate the validity of BAC, a novel anthropomorphic SMA Actuated forearm/wrist mechanism is utilized in real-time PC based control experiments. BAC is experimentally compared to PID and integral variable structure controllers and it is shown that its performance is superior.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2576
Author(s):  
Alfonso Gómez-Espinosa ◽  
Roberto Castro Sundin ◽  
Ion Loidi Eguren ◽  
Enrique Cuan-Urquizo ◽  
Cecilia D. Treviño-Quintanilla

New actuators and materials are constantly incorporated into industrial processes, and additional challenges are posed by their complex behavior. Nonlinear hysteresis is commonly found in shape memory alloys, and the inclusion of a suitable hysteresis model in the control system allows the controller to achieve a better performance, although a major drawback is that each system responds in a unique way. In this work, a neural network direct control, with online learning, is developed for position control of shape memory alloy manipulators. Neural network weight coefficients are updated online by using the actuator position data while the controller is applied to the system, without previous training of the neural network weights, nor the inclusion of a hysteresis model. A real-time, low computational cost control system was implemented; experimental evaluation was performed on a 1-DOF manipulator system actuated by a shape memory alloy wire. Test results verified the effectiveness of the proposed control scheme to control the system angular position, compensating for the hysteretic behavior of the shape memory alloy actuator. Using a learning algorithm with a sine wave as reference signal, a maximum static error of 0.83° was achieved when validated against several set-points within the possible range.


2005 ◽  
Vol 11 (3) ◽  
pp. 407-429 ◽  
Author(s):  
M. Elahinia ◽  
J. Koo ◽  
M. Ahmadian ◽  
C. Woolsey

This paper investigates a nonlinear controller designed to stabilize a single-degree-of-freedom rotary shape memory alloy (SMA) actuated robotic arm. To this end, a bias-type robotic arm was built using 150 pm Flexinol SMA wire. This robot is designed to lift and position lightweight objects. Upon complete phase transformation, the SMA wire actuates the robot to rotate up to 1350. A linear spring is used to extend the wire to its original length because the SMA wire can only apply force in one direction. To measure the angular position of the robotic arm, an optical rotary encoder was used. To stabilize the robot, a model-based controller was developed. The controller incorporates the SMA actuated robot model with nonlinear control techniques. The model consists of three parts: the dynamics/kinematics of the arm, the thermoruechanical behavior of SMA wire, and the heat transfer model of the wire. The model-based backstepping controller determines the applied voltage to the SMA wire for positioning the arm at the desired angle by first calculating the wire's stress to stabilize the arm. The voltage to the SMA wire is then calculated based on the desired stress and the SMA's thermomechanical and heat transfer models. A series of simulations were performed to investigate stabilizing performance of the controller. Moreover, other issues such as robustness of the control design was evaluated. The results show that the control algorithms is able to globally and asymptotically stabilize the robot. The results further indicate that the sliding mode control has better robustness properties.


Author(s):  
Nikhil Ramaswamy ◽  
Nader Sadegh

Dynamic Programming (DP) technique is an effective algorithm to find the global optimum. However when applying DP for finite state problems, if the state variables are discretized, it increases the cumulative errors and leads to suboptimal results. In this paper we develop and present a new DP algorithm that overcomes the above problem by eliminating the need to discretize the state space by the use of sets. We show that the proposed DP leads to a globally optimal solution for a discrete time system by minimizing a cost function at each time step. To show the efficacy of the proposed DP, we apply it to optimize the fuel economy of the series and parallel Hybrid Electric Vehicle (HEV) architectures and the case study of Chevrolet Volt 2012 and the Honda Civic 2012 for the series and parallel HEV’s respectively are considered. Simulations are performed over predefined drive cycles and the results of the proposed DP are compared to previous DP algorithm (DPdis). The proposed DP showed an average improvement of 2.45% and 21.29% over the DPdis algorithm for the series and the parallel HEV case respectively over the drive cycles considered. We also propose a real time control strategy (RTCS) for online implementation based on the concept of Preview Control. The RTCS proposed is applied for the series and parallel HEV’s over the drive cycles and the results obtained are discussed.


Sign in / Sign up

Export Citation Format

Share Document