Sensitivity of Tuned Bladed Disk Response to Frequency Veering

2004 ◽  
Vol 127 (4) ◽  
pp. 835-842 ◽  
Author(s):  
J. A. Kenyon ◽  
J. H. Griffin ◽  
N. E. Kim

A continuous method is presented for representing the mode interaction that occurs in frequency veering in terms of the nominal sector modes of a cyclic symmetric bladed disk model constrained at a reference interblade phase angle. Using this method, the effect of frequency veering on the mode shapes can be considered in the context of the generalized forces exciting the system and the modal response of the bladed disk. It is shown that in a blade-dominated family of modes, the transfer of modal energy to the disk in the veering results in a lower generalized force exciting the mode as well as reduced response amplitude in the blade. For the disk-dominated modes, the sharing of modal energy with the blades can lead to the disk being excited by aerodynamic loading. These effects can have important implications for predicting and interpreting forced response in bladed disks. Numerical examples are provided to illustrate these concepts.

Author(s):  
J. A. Kenyon ◽  
J. H. Griffin ◽  
N. E. Kim

A continuous method is presented for representing the mode interaction that occurs in frequency veering in terms of the nominal sector modes of a cyclic symmetric bladed disk model constrained at a fixed reference interblade phase angle. Using this method, the effect of frequency veering on the mode shapes can be considered in the context of the generalized forces exciting the system and the modal response of the bladed disk. It is shown that in a blade-dominated family of modes, the transfer of modal energy to the disk in the veering results in a lower generalized force exciting the mode as well as reduced response amplitude in the blade. For the disk-dominated modes, the sharing of modal energy with the blades can lead to the disk being excited by aerodynamic loading. These effects can have important implications for predicting and interpreting forced response in bladed disks. Numerical examples are provided to illustrate these concepts.


2004 ◽  
Vol 126 (1) ◽  
pp. 175-183 ◽  
Author(s):  
E. P. Petrov

An effective method for analysis of periodic forced response of nonlinear cyclically symmetric structures has been developed. The method allows multiharmonic forced response to be calculated for a whole bladed disk using a periodic sector model without any loss of accuracy in calculations and modeling. A rigorous proof of the validity of the reduction of the whole nonlinear structure to a sector is provided. Types of bladed disk forcing for which the method may be applied are formulated. A multiharmonic formulation and a solution technique for equations of motion have been derived for two cases of description for a linear part of the bladed disk model: (i) using sector finite element matrices and (ii) using sector mode shapes and frequencies. Calculations validating the developed method and a numerical investigation of a realistic high-pressure turbine bladed disk with shrouds have demonstrated the high efficiency of the method.


Author(s):  
Abdelgadir M. Mahmoud ◽  
Mohd S. Leong

Turbine blades are always subjected to severe aerodynamic loading. The aerodynamic loading is uniform and Of harmonic nature. The harmonic nature depends on the rotor speed and number of nozzles (vanes counts). This harmonic loading is the main sources responsible for blade excitation. In some circumstances, the aerodynamic loading is not uniform and varies circumferentially. This paper discussed the effect of the non-uniform aerodynamic loading on the blade vibrational responses. The work involved the experimental study of forced response amplitude of model blades due to inlet flow distortion in the presence of airflow. This controlled inlet flow distortion therefore represents a nearly realistic environment involving rotating blades in the presence of airflow. A test rig was fabricated consisting of a rotating bladed disk assembly, an inlet flow section (where flow could be controlled or distorted in an incremental manner), flow conditioning module and an aerodynamic flow generator (air suction module with an intake fan) for investigations under laboratory conditions. Tests were undertaken for a combination of different air-flow velocities and blade rotational speeds. The experimental results showed that when the blades were subjected to unsteady aerodynamic loading, the responses of the blades increased and new frequencies were excited. The magnitude of the responses and the responses that corresponding to these new excited frequencies increased with the increase in the airflow velocity. Moreover, as the flow velocity increased the number of the newly excited frequency increased.


Author(s):  
Adam Koscso ◽  
E. P. Petrov

Abstract One of the major sources of the damping of the forced vibration for bladed disk structures is the micro-slip motion at the contact interfaces of blade-disk joints. In this paper, the modeling strategies of nonlinear contact interactions at blade roots are examined using high-fidelity modelling of bladed disk assemblies and the nonlinear contact interactions at blade-disk contact patches. The analysis is performed in the frequency domain using multiharmonic harmonic balance method and analytically formulated node-to-node contact elements modelling frictional and gap nonlinear interactions. The effect of the number, location and distribution of nonlinear contact elements are analyzed using cyclically symmetric bladed disks. The possibility of using the number of the contact elements noticeably smaller than the total number of nodes in the finite element mesh created at the contact interface for the high-fidelity bladed disk model is demonstrated. The parameters for the modeling of the root damping are analysed for tuned and mistuned bladed disks. The geometric shapes of blade roots and corresponding slots in disks cannot be manufactured perfectly and there is inevitable root joint geometry variability within the manufacturing tolerances. Based on these tolerances, the extreme cases of the geometry variation are defined and the assessment of the possible effects of the root geometry variation on the nonlinear forced response are performed based on a set of these extreme cases.


Author(s):  
Charles Seeley ◽  
Sunil Patil ◽  
Andy Madden ◽  
Stuart Connell ◽  
Gwenael Hauet ◽  
...  

Abstract Hydroelectric power generation accounts for 7% of the total world electric energy production. Francis turbines are often employed in large-scale hydro projects and represent 60% of the total installed base. Outputs up to 800 MW are available and efficiencies of 95% are common. Cost, performance, and design cycle time are factors that continue to drive new designs as well as retrofits. This motivates the development of more sophisticated analysis tools to better assess runner performance earlier in the design phase. The focus of this paper is to demonstrate high fidelity and time-efficient runner damping and forced response calculations based on one-way fluid-structure interaction (FSI) using loosely coupled commercial finite element analysis (FEA) and computational fluid dynamics (CFD) codes. The runner damping is evaluated based on the work done by the fluid on the runner. The calculation of the work first involves determining the runner mode shapes and natural frequencies using a cyclic symmetric FEA model with structural elements to represent the runner hardware, and acoustic fluid elements to represent the mass loading effect of the fluid. The mode shapes are then used in a transient CFD calculation to determine the damping which represents the work done by the fluid on the runner. Positive damping represents stability from flutter perspective while negative damping represents unstable operating conditions. A transient CFD calculation was performed on a runner to obtain engine order forcing function from upstream stationary vanes. This unsteady forcing function was mapped to the FEA model. Care is taken to account for the proper inter-blade phase angle on the cyclic symmetric model. The hydraulic damping from flutter calculations was also provided as input to the forced response. The forced response is then determined using this equivalent proportional damping and modal superposition of the FEA model that includes both the structural and acoustic elements. Results of the developed analysis procedure are presented based on the Tokke runner, that has been the basis of several studies through the Norwegian HydroPower Center. Unique features of the workflow and modeling approaches are discussed in detail. Benefits and challenges for both the FEA model and the CFD model are discussed. The importance of the hydraulic damping, that is traditionally ignored in previous analysis is discussed as well. No validation data is available for the forced response, so this paper is focused on the methodology for the calculations.


Author(s):  
John Judge ◽  
Christophe Pierre ◽  
Oral Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, twelve-bladed disk with simple geometry is subjected to a traveling-wave, out-of-plane, “engine order” excitation delivered via phase-shifted control signals sent to piezo-electric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


Author(s):  
David J. Malcolm

A set of linear equations describing the motion of an operating 3-bladed HAWT are obtained from the dynamic characteristics of the stationary turbine by adding rotating frame effects. The approach makes use of the Coleman multi-blade transformation to present all results relative to the fixed frame. The formulation is in terms of a selected number of stationary, real, mode shapes. The formulation is applied to the expression of both the aerodynamic loading and the displacement response in terms of the operating mode shapes. This technique is applied to the conditions of vertical wind shear and off-yaw operation of a hypothetical 46-m wind turbine. The principal objective of the paper is to enable the characteristic of the inflow to be related to the nature of the response. A second objective is to illustrate a method of extracting linearized models from general aeroelastic codes such as ADAMS™.


Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different blades of random lengths. Both specimens are subject to traveling-wave excitations delivered by piezo-electric actuators. The primary aim of the experiment is to demonstrate the occurrence of an increase in forced response blade amplitudes due to mistuning, and to verify analytical predictions about the magnitude of these increases. In particular, the impact of localized mode shapes, engine order excitation, and disk structural coupling on the sensitivity of forced response amplitudes to blade mistuning is reported. This work reports one of the first systematic experiments carried out to demonstrate and quantify the effect of mistuning on the forced response of bladed disks.


2002 ◽  
Vol 124 (4) ◽  
pp. 372-377 ◽  
Author(s):  
David J. Malcolm

A set of linear equations describing the motion of an operating 3-bladed HAWT is obtained from the dynamic characteristics of the stationary turbine by adding rotating frame effects. The approach makes use of the Coleman multi-blade transformation to present all results relative to the fixed frame. The formulation is in terms of a selected number of stationary, real mode shapes. The formulation is applied to the expression of both the aerodynamic loading and the displacement response in terms of the complex operating mode shapes. The technique is demonstrated on a hypothetical 46-m wind turbine subject to vertical wind shear. The principal objective of the paper is to enable the characteristics of the inflow to be related to the nature of the response. A second objective is to illustrate a method of extracting linearized models from general aeroelastic codes such as ADAMS™.


Author(s):  
Ryoji Tamai ◽  
Ryozo Tanaka ◽  
Yoshichika Sato ◽  
Karsten Kusterer ◽  
Gang Lin ◽  
...  

Turbine blades are subjected to high static and dynamic loads. In order to reduce the vibration amplitude means of friction damping devices have been developed, e.g. damping wires, interblade friction dampers and shrouds. This paper presents both numerical and experimental results for investigating the dynamical behavior of shrouded turbine blades. The studies are focused on the lowest family of the bladed disk. The aspect of experimental studies, the effect of the shroud contact force on the resonance frequency of the blade was examined by using the simplified blade test stand. Based on the result of the simplified blade studies, the shroud contact force of the real blade was determined in order to stabilize the resonance frequencies of the bladed disk system. The resonance frequencies and mode shapes of the real bladed disk assembly were measured in no rotation and room temperature condition. Finally, the dynamic strains were measured in the actual engine operations by using a telemetry system. The aspect of analytical studies, a non-linear vibration analysis code named DATES was applied to predict vibration behavior of a shrouded blade model which includes contact friction surfaces. The DATES code is a forced response analysis code that employs a 3-dimensional friction contact model. The Harmonic Balance Method (HBM) is applied to solve resulting nonlinear equations of motion in frequency domain. The simulated results show a good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document