Vibration Analysis of Shrouded Turbine Blades for a 30 MW Gas Turbine

Author(s):  
Ryoji Tamai ◽  
Ryozo Tanaka ◽  
Yoshichika Sato ◽  
Karsten Kusterer ◽  
Gang Lin ◽  
...  

Turbine blades are subjected to high static and dynamic loads. In order to reduce the vibration amplitude means of friction damping devices have been developed, e.g. damping wires, interblade friction dampers and shrouds. This paper presents both numerical and experimental results for investigating the dynamical behavior of shrouded turbine blades. The studies are focused on the lowest family of the bladed disk. The aspect of experimental studies, the effect of the shroud contact force on the resonance frequency of the blade was examined by using the simplified blade test stand. Based on the result of the simplified blade studies, the shroud contact force of the real blade was determined in order to stabilize the resonance frequencies of the bladed disk system. The resonance frequencies and mode shapes of the real bladed disk assembly were measured in no rotation and room temperature condition. Finally, the dynamic strains were measured in the actual engine operations by using a telemetry system. The aspect of analytical studies, a non-linear vibration analysis code named DATES was applied to predict vibration behavior of a shrouded blade model which includes contact friction surfaces. The DATES code is a forced response analysis code that employs a 3-dimensional friction contact model. The Harmonic Balance Method (HBM) is applied to solve resulting nonlinear equations of motion in frequency domain. The simulated results show a good agreement with the experimental results.

Author(s):  
S. Tatzko ◽  
L. Panning-von Scheidt ◽  
J. Wallaschek ◽  
A. Kayser ◽  
G. Walz

Freestanding turbine blades have typically low structural damping and thus require additional friction damping devices, such as underplatform dampers. The friction coupling between neighboring blades reduces response amplitude and increases resonance frequency. Along with forced response excitation large blades, especially of last stage, could be excited by fluid structural interaction (flutter). To prevent such excitation alternate mistuned blade patterns are beneficial disturbing traveling waves in the stage. In this paper the influence of alternate mistuning is investigated with a simplified oscillator chain as well as a bladed disk assembly coupled by frictional contacts. It is pointed out that the performance of friction coupling can be improved by alternate mistuning as long as the engine order of the excitation is below quarter of the number of blades. Alternate mistuning causes a mode coupling between two nodal diameter vibration mode shapes allowing for energy transfer. The in-house developed software code DATAR is enhanced and alternate mistuning can be applied to the blades as well as to the damping elements. For validation the DATAR code was applied to an alternate mistuned last stage blade of a Siemens gas turbine and compared with available field engine measurement.


Author(s):  
E. P. Petrov ◽  
Z.-I. Zachariadis ◽  
A. Beretta ◽  
R. Elliott

A new effective method for comprehensive modeling of gas flow effects on vibration of nonlinear vibration of bladed disks has been developed for a case when the effect of the gas flow on the mode shapes is significant. The method separates completely the structural dynamics calculations from the significantly more computationally expensive computational fluid dynamics (CFD) calculations while providing the high accuracy of modeling for aerodynamic effects. A comprehensive analysis of the forced response using the new method has been performed for a realistic turbine bladed disk with root-disk joints, tip, and under-platform dampers. The full chain of aerodynamic and structural calculations are performed: (i) determination of boundary conditions for CFD, (ii) CFD analysis, (iii) calculation of the aerodynamic characteristics required by the new method, and (iv) nonlinear forced response analysis using the modal aerodynamic influence matrix (MAIM). The efficiency of the friction damping devices has been studied and compared for several resonance frequencies and engine orders. Advantages of the method for aerodynamic effect modeling have been demonstrated.


2004 ◽  
Vol 126 (1) ◽  
pp. 175-183 ◽  
Author(s):  
E. P. Petrov

An effective method for analysis of periodic forced response of nonlinear cyclically symmetric structures has been developed. The method allows multiharmonic forced response to be calculated for a whole bladed disk using a periodic sector model without any loss of accuracy in calculations and modeling. A rigorous proof of the validity of the reduction of the whole nonlinear structure to a sector is provided. Types of bladed disk forcing for which the method may be applied are formulated. A multiharmonic formulation and a solution technique for equations of motion have been derived for two cases of description for a linear part of the bladed disk model: (i) using sector finite element matrices and (ii) using sector mode shapes and frequencies. Calculations validating the developed method and a numerical investigation of a realistic high-pressure turbine bladed disk with shrouds have demonstrated the high efficiency of the method.


Author(s):  
Abdelgadir M. Mahmoud ◽  
Mohd S. Leong

Turbine blades are always subjected to severe aerodynamic loading. The aerodynamic loading is uniform and Of harmonic nature. The harmonic nature depends on the rotor speed and number of nozzles (vanes counts). This harmonic loading is the main sources responsible for blade excitation. In some circumstances, the aerodynamic loading is not uniform and varies circumferentially. This paper discussed the effect of the non-uniform aerodynamic loading on the blade vibrational responses. The work involved the experimental study of forced response amplitude of model blades due to inlet flow distortion in the presence of airflow. This controlled inlet flow distortion therefore represents a nearly realistic environment involving rotating blades in the presence of airflow. A test rig was fabricated consisting of a rotating bladed disk assembly, an inlet flow section (where flow could be controlled or distorted in an incremental manner), flow conditioning module and an aerodynamic flow generator (air suction module with an intake fan) for investigations under laboratory conditions. Tests were undertaken for a combination of different air-flow velocities and blade rotational speeds. The experimental results showed that when the blades were subjected to unsteady aerodynamic loading, the responses of the blades increased and new frequencies were excited. The magnitude of the responses and the responses that corresponding to these new excited frequencies increased with the increase in the airflow velocity. Moreover, as the flow velocity increased the number of the newly excited frequency increased.


Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.


Author(s):  
Andrea Amedei ◽  
Enrico Meli ◽  
Andrea Rindi ◽  
Benedetta Romani ◽  
Lorenzo Pinelli ◽  
...  

Abstract The need for high performances is pushing the complexity of mechanical design at very high levels, especially for turbomachinery components. In this field, structural topology optimization methods together with additive manufacturing techniques for high resistant alloys are considered very promising tools, but their potentialities have not been deeply investigated yet for critical rotating components like new-generation turbine blades. In this framework, this research work proposes a methodology for the design, the optimization and the additive manufacturing of extremely stressed turbomachinery components like turbine blade-rows. The presented procedure pays particular attention to important aspects of the problems as fluid-structure interactions (forced response and flutter phenomena) and fatigue of materials, going beyond the standard structural optimization approaches found in the literature. The new design strategy enables a substantial reduction of the component mass, limiting the maximum stress and improving the vibrational behaviour of the system in terms of eigenfrequencies, modal shapes and fatigue life. Furthermore, the numerical procedure shows robustness and efficiency, making the proposed methodology a good tool for rapid design and prototyping, and for reducing the design costs and the time-to-market typical of this kind of mechanical elements. The procedure has been applied to a low-pressure turbine rotor to improve the aeromechanical behavior while keeping the aerodynamic performance. From the original geometry, mode-shapes, forcing functions (due to rotor/stator interactions) and aerodynamic damping have been numerically evaluated and are used as input data for the following topological optimization. Finally, the optimized geometry has been verified in order to confirm the improved aeromechanical design. After the structural topology optimization, the final geometries provided by the procedure have been then properly rendered to make them suitable for additive manufacturing. Some prototypes of the new optimized turbine blade have been manufactured from aluminum to be tested mechanically and in terms of fatigue.


1985 ◽  
Vol 107 (1) ◽  
pp. 205-211 ◽  
Author(s):  
J. H. Griffin ◽  
A. Sinha

This paper summarizes the results of an investigation to establish the impact of mistuning on the performance and design of blade-to-blade friction dampers of the type used to control the resonant response of turbine blades in gas turbine engines. In addition, it discusses the importance of friction slip force variations on the dynamic response of shrouded fan blades.


Author(s):  
S. Tatzko ◽  
L. Panning-von Scheidt ◽  
J. Wallaschek ◽  
A. Kayser

In turbo machinery design it is important to avoid vibrations that can destroy the turbine in the last resort. The rotating structure is exposed to periodic excitation forces. Two main types of periodic excitation can be distinguished. Flutter is the effect when mass flow forces couple with a natural vibration mode. The result is a negative damping coefficient and amplitudes will rise up to malfunction of the structure. The engine order excitation is a periodic excitation where the force signal is directly related to the speed of the rotor. A forced response calculation gives information about the blade vibration. Nonlinear coupling, i.e. friction coupling, between blades is used to increase damping of the bladed disk. Dynamic analysis of turbine blades with nonlinear coupling is a complex task and computer simulations are inevitable. Various techniques have been developed to reduce computational effort. The cyclic symmetry approach assumes each blade around the disk to be identical. Thus only one sector of the disk is sufficient to compute the steady state solution of the whole turbine blading. However, it has been observed that mistuning of blades reduces the flutter instability. On the other hand statistical mistuning can lead to dangerously high forced response amplitudes due to mode localization. A compromise is intentional mistuning. The simplest approach is alternate mistuning with every other blade exhibiting identical mechanical properties. This work explains in detail how a turbine bladed disk can be modeled when alternate mistuning is applied intentionally. Cyclic symmetry is used and each sector comprises two blades. This untypical choice of the sector size has significant impact on results of a cyclic modal analysis. Simulation results show the influence of alternate mistuned turbine bladings which are coupled by underplatform damper elements.


Author(s):  
Christian Siewert ◽  
Heinrich Stüer

It is well known that the vibrational behavior of a mistuned bladed disk differs strongly from that of a tuned bladed disk. A large number of publications dealing with the dynamics of mistuned bladed disks are available in the literature. The vibrational phenomena analyzed in these publications are either forced vibrations or self-excited flutter vibrations. Nearly, all published literature on the forced vibrations of mistuned blades disks considers harmonic, i.e., steady-state, vibrations, whereas the self-excited flutter vibrations are analyzed by the evaluation of the margin against instabilities by means of a modal, or rather than eigenvalue, analysis. The transient forced response of mistuned bladed disk is not analyzed in detail so far. In this paper, a computationally efficient mechanical model of a mistuned bladed disk to compute the transient forced response is presented. This model is based on the well-known fundamental model of mistuning (FMM). With this model, the statistics of the transient forced response of a mistuned bladed disk is analyzed and compared to the results of harmonic forced response analysis.


Author(s):  
John Judge ◽  
Christophe Pierre ◽  
Oral Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, twelve-bladed disk with simple geometry is subjected to a traveling-wave, out-of-plane, “engine order” excitation delivered via phase-shifted control signals sent to piezo-electric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


Sign in / Sign up

Export Citation Format

Share Document