A Nearshore Wave Energy Atlas for Portugal

2003 ◽  
Vol 127 (3) ◽  
pp. 249-255 ◽  
Author(s):  
M. T. Pontes ◽  
R. Aguiar ◽  
H. Oliveira Pires

The nearshore wave energy resource in Portugal has been assessed through the development of ONDATLAS. This is an electronic atlas, compatible with Internet access, containing comprehensive wave climate and wave energy statistics for 78 points at about 20m water depth spaced variably ca.5-30km, 5 points at deep water, and 2 points at open ocean locations. The data were produced by a third-generation wind-wave model, complemented by an inverse-ray model that computes the directional spectra transformation from open ocean to the nearshore. Shoaling, refraction, bottom dissipation, and shelter by the coastline and/or neighboring islands are taken into account. ONDATLAS statistics comprise yearly and monthly values, variability and probability data for significant wave height, energy (mean) period, peak period and wave power, and directional histograms for wave and power direction. Joint probability distributions for various combinations of the above parameters are also available, as well as extreme values and return period for wave height and period parameters. A summary of the detailed verification of this model using long-term buoy measurements at four sites is presented. The main characteristics of ONDATLAS are described. The strong spatial variability that wave conditions exhibit at the coastal area are illustrated and a brief assessment of the nearshore resource at the Portugal mainland is presented.

Author(s):  
M. T. Pontes ◽  
R. Aguiar ◽  
H. Oliveira Pires

The nearshore wave energy resource in Portugal has been assessed through the development of ONDATLAS. This is an electronic atlas, compatible with Internet access, containing comprehensive wave climate and wave energy statistics for 78 points at about 20 m water depth spaced variably ca. 5 km to 30 km, 5 points at deep water and 2 points at open ocean locations. The data were produced by a third-generation wind-wave model, complemented by an inverse-ray model that computes the directional spectra transformation from open ocean to the near-shore. Shoaling, refraction, bottom dissipation and shelter by the coastline and/or neighbouring islands are taken into account. ONDATLAS statistics comprise yearly and monthly values, variability and probability data for significant wave height, energy (mean) period, peak period and wave power, and directional histograms for wave and power direction. Joint probability distributions for various combinations of the above parameters are also available, as well as extreme values and return period for wave height and period parameters. A summary of the detailed verification of this model using long-term buoy measurements at four sites is presented. The main characteristics of ONDATLAS are described. The strong spatial variability that wave conditions exhibit at the coastal area are illustrated and a brief assessment of the nearshore resource at the Portugal mainland is presented.


Author(s):  
Sarah Gallagher ◽  
Roxana Tiron ◽  
Frederic Dias

The western coast of Ireland possesses one of the highest wave energy resources in the world and consequently is a promising location for the future deployment of Wave Energy Converters (WECs). Most wave climate studies for this region have focused primarily on the offshore area since it enjoys higher energy densities. However, recent studies have shown that nearshore locations offer a similar potential for the exploitation of wave energy as offshore sites [13]. Furthermore, the proximity of WEC devices to the shore will likely reduce losses in power transport, and facilitate access for maintenance activities. In this context, we analyse the wave climate over a ten year period for several nearshore sites off the Irish West Coast. The wave climate is estimated using a spectral wave model, WaveWatch III, forced with wind and spectral wave data from the ECMWF (European Centre for Medium Range Weather Forecast) operational archive. The wave model is validated with wave buoy data from intermediate to shallow depths (< 60 m). Our focus is on two aspects of the wave climate resource assessment. Firstly, we characterise the directionality of the wave energy resource (mean direction, directional spread) which affects the site selection, design and performance of nearshore WECs. Secondly, we discuss the climate data from the perspective of accessibility for maintenance. When selecting sites for the deployment of WECs, a balance needs to be found between two opposing criteria: the existence of sufficiently long, continuous time intervals of calm sea states (weather windows) which are necessary for maintenance activities to take place, and a high, consistent level of wave energy density, essential for economically viable wave energy extraction.


1996 ◽  
Vol 118 (4) ◽  
pp. 307-309 ◽  
Author(s):  
M. T. Pontes ◽  
G. A. Athanassoulis ◽  
S. Barstow ◽  
L. Cavaleri ◽  
B. Holmes ◽  
...  

An atlas of the European offshore wave energy resource, being developed within the scope of a European R&D program, includes the characterization of the offshore resource for the Atlantic and Mediterranean coasts of Europe in addition to providing wave-energy and wave-climate statistics that are of interest to other users of the ocean. The wave data used for compiling the Atlas come from the numerical wind-wave model WAM, implemented in the routine operation of the European Centre for Medium Range Weather Forecasts (ECMWF), in addition to directional wave measurements from the Norwegian offshore waters.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3482
Author(s):  
Ruth Branch ◽  
Gabriel García-Medina ◽  
Zhaoqing Yang ◽  
Taiping Wang ◽  
Fadia Ticona Rollano ◽  
...  

Wave-generated power has potential as a valuable coastal resource, but the wave climate needs to be mapped for feasibility before wave energy converters are installed. Numerical models are used for wave resource assessments to quantify the amount of available power and its seasonality. Alaska is the U.S. state with the longest coastline and has extensive wave resources, but it is affected by seasonal sea ice that dampens the wave energy and the full extent of this dampening is unknown. To accurately characterize the wave resource in regions that experience seasonal sea ice, coastal wave models must account for these effects. The aim of this study is to determine how the dampening effects of sea ice change wave energy resource assessments in the nearshore. Here, we show that by combining high-resolution sea ice imagery with a sea ice/wave dampening parameterization in an unstructured grid, the Simulating Waves Nearshore (SWAN) model improves wave height predictions and demonstrates the extent to which wave power decreases when sea ice is present. The sea ice parametrization decreases the bias and root mean square errors of wave height comparisons with two wave buoys and predicts a decrease in the wave power of up to 100 kW/m in areas around Prince William Sound, Alaska. The magnitude of the improvement of the model/buoy comparison depends on the coefficients used to parameterize the wave–ice interaction.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 333 ◽  
Author(s):  
Carlo Re ◽  
Giorgio Manno ◽  
Giuseppe Ciraolo ◽  
Giovanni Besio

This paper presents the estimation of the wave energy potential around the Aegadian islands (Italy), carried out on the basis of high resolution wave hindcast. This reanalysis was developed employing Weather Research and Forecast (WRF) and WAVEWATCH III ® models for the modelling of the atmosphere and the waves, respectively. Wave climate has been determined using the above-mentioned 32-year dataset covering the years from 1979 to 2010. To improve the information about wave characteristics regarding spatial details, i.e., increasing wave model resolution, especially in the nearshore region around the islands, a SWAN (Simulating WAves Nearshore) wave propagation model was used. Results obtained through the development of the nearshore analysis detected four energetic hotspots close to the coast of the islands. Near Marettimo island, only one hotspot was detected with a maximum wave energy flux of 9 kW/m, whereas, around Favignana, three hotspots were identified with a maximum wave energy flux of 6.5 kW/m. Such values of available wave energy resource are promising to develop different projects for wave energy converters in specific areas along the coast, in order to improve the energetic independence of Aegadian islands.


2021 ◽  
Vol 9 (5) ◽  
pp. 522
Author(s):  
Marko Katalinić ◽  
Joško Parunov

Wind and waves present the main causes of environmental loading on seagoing ships and offshore structures. Thus, its detailed understanding can improve the design and maintenance of these structures. Wind and wave statistical models are developed based on the WorldWaves database for the Adriatic Sea: for the entire Adriatic Sea as a whole, divided into three regions and for 39 uniformly spaced locations across the offshore Adriatic. Model parameters are fitted and presented for each case, following the conditional modelling approach, i.e., the marginal distribution of significant wave height and conditional distribution of peak period and wind speed. Extreme significant wave heights were evaluated for 20-, 50- and 100-year return periods. The presented data provide a consistent and comprehensive description of metocean (wind and wave) climate in the Adriatic Sea that can serve as input for almost all kind of analyses of ships and offshore structures.


Author(s):  
Eliab R. Beserra ◽  
Andre´ L. T. Mendes ◽  
Segen F. Estefen ◽  
Carlos E. Parente

A variety of ocean wave energy conversion devices have been proposed worldwide considering different technology and energy extraction methods. In order to support full-scale prototype design and performance assessments of a conversion scheme to be deployed on the northern coast of Brazil, a long-term wave climate analysis is under development. A 5-year pitch-roll buoy data series has been investigated through an adaptive technique to enhance spatial resolution and allow for accurate wave directionality evaluation. Device design most influential variables such as extreme significant wave height, peak period and directionality were considered. Temporal variability in wave energy levels was particularly investigated for energy resource assessment. The major findings of this work include the narrow directional amplitude of the incident wave and higher significant wave heights of locally generated waves. The estimated energy resource levels agreed well with literature, also showing little annual fluctuation. The wave climate demonstrated to be in full agreement with the large-scale Equatorial Atlantic atmospheric variability, dominated by either local wind waves or by distant storm swells.


2020 ◽  
Vol 8 (3) ◽  
pp. 199 ◽  
Author(s):  
Ximun Lastiri ◽  
Stéphane Abadie ◽  
Philippe Maron ◽  
Matthias Delpey ◽  
Pedro Liria ◽  
...  

Wave resource assessment is the first step toward the installation of a wave energy converter (WEC). To support initiatives for wave energy development in the southwest of France, a coastal wave database is built from a 44-year hindcast simulation with the spectral wave model SWAN (Simulating WAve Nearshore) run on a high-resolution unstructured grid. The simulation includes shallow-water processes such as refraction, shoaling, and breaking. The model is validated against a five-year coastal wave buoy recording. The study shows that most of the resource is provided by sea states with wave heights ranging from 2 to 5 m, with wave periods from 10 and 15 s, and coming from a very narrow angular sector. The long hindcast duration and the refined unstructured grid used for the simulation allow assessment of the spatiotemporal distribution of wave energy across the coastal area. On the one hand, large longshore variations of the resource caused by steep bathymetric gradients such as the Capbreton submarine canyon are underlined. On the other hand, the study highlights that no specific long-term trend can be extracted regarding the coastal wave energy resource evolution. The provided downscaled local wave resource information may be used to optimize the location and design of a future WEC that could be deployed in the region.


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 287-300 ◽  
Author(s):  
T. Soomere ◽  
R. Weisse ◽  
A. Behrens

Abstract. The basic features of the wave climate in the Southwestern Baltic Sea (such as the average and typical wave conditions, frequency of occurrence of different wave parameters, variations in wave heights from weekly to decadal scales) are established based on waverider measurements at the Darss Sill in 1991–2010. The measured climate is compared with two numerical simulations with the WAM wave model driven by downscaled reanalysis of wind fields for 1958–2002 and by adjusted geostrophic winds for 1970–2007. The wave climate in this region is typical for semi-enclosed basins of the Baltic Sea. The maximum wave heights are about half of those in the Baltic Proper. The maximum recorded significant wave height HS =4.46 m occurred on 3 November 1995. The wave height exhibits no long-term trend but reveals modest interannual (about 12 % of the long-term mean of 0.76 m) and substantial seasonal variation. The wave periods are mostly concentrated in a narrow range of 2.6–4 s. Their distribution is almost constant over decades. The role of remote swell is very small.


Author(s):  
M. T. Pontes ◽  
M. Bruck

The conversion of the energy contained in ocean waves into an useful form of energy namely electrical energy requires the knowledge at least of wave height and period parameters. Since 1992 at least one altimeter has been accurately measuring significant wave height Hs. To derive wave period parameters namely zero-crossing period Tz from the altimeter backscatter coefficient various models have been proposed. Another space-borne sensor that measures ocean waves is SAR (or the advanced ASAR) from which directional spectra are obtained. In this paper various models proposed to compute Tz from altimeter data are presented and verified against a collocated set of Jason altimeter and NDBC buoy data. A good fitting of altimeter estimates to buoy data was found. Directional spectra obtained from ENVISAT ASAR measurements were compared against NDBC buoy data. It was concluded that for the buoys that are more sensitive to long low-frequency wave components the fitting of wave parameters and spectral form is good for short spatial distances. However, since the cut-off ASAR frequency is low (reliable information is provided only for long waves) their use for wave energy resource assessment in areas where wind-waves are important is limited.


Sign in / Sign up

Export Citation Format

Share Document