scholarly journals Engines for the Cosmos

2003 ◽  
Vol 125 (01) ◽  
pp. 50-53
Author(s):  
Aloysius I. Reisz ◽  
Stephen L. Rodgers

This article highlights how exploration of deep space requires systems of propulsion that can go the distance. To explore the outer planets in a reasonable time, engines must generate either high exhaust velocity or high specific impulse. The United States recognized early the benefit that nuclear propulsion could provide for interplanetary exploration and ran an extensive research and development program devoted to it. Electric propulsion devices require an energy source and an electric generation method in order to operate. Engines being engineered for deep space missions are, out of necessity, fueled by clean energy from light gas atoms. The fuels are brought to certain physical states and subjected to electric or magnetic fields that accelerate and eject charged particles out of the engine, thereby giving momentum to the spacecraft. These new deep space engines will enable to send missions to the far reaches of the solar system and beyond with exploratory instruments.

Author(s):  
Nikolay Petrov ◽  
◽  
Tamara Antonova ◽  
◽  

With the rapid development of space technology, the scale of human space exploration is expanding significantly. However, the growing demand for deep space travel cannot be met with conventional chemical engines. Thus, the need for new mechanisms for providing jet thrust, including electric motors, becomes clear. Electric propulsion technology has significant advantages over traditional chemical engines in deep space flight due to its characteristics such as high specific impulse, small size, long service life. A negative feature of electric motors can be called low thrust, however, firstly, in open space this is insignificant and, secondly, the thrust of electric motors can be significantly increased, and for this, there are reserves available at the current level of technology development. Ways to increase the thrust of electric ion thrusters will be detailed and discussed in this work. The increase in the power of ion engines is limited to a large extent by the erosion of the control grids; the ion flow hits the surface of the solid material of the control grid electrode with energetic ions and gradually leads to the failure of this electrode. In this work, the authors will show that the use of field emission as a source of electron beams ionizing the working medium can solve the problem of erosion of control electrodes, due to which it will be possible to significantly increase the strength of the working fields for ion engines, which in turn will increase the specific impulse, efficiency, flow rate and power of the ion engine as a whole.


2008 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony G Picciano ◽  
Robert V. Steiner

Every child has a right to an education. In the United States, the issue is not necessarily about access to a school but access to a quality education. With strict compulsory education laws, more than 50 million students enrolled in primary and secondary schools, and billions of dollars spent annually on public and private education, American children surely have access to buildings and classrooms. However, because of a complex and competitive system of shared policymaking among national, state, and local governments, not all schools are created equal nor are equal education opportunities available for the poor, minorities, and underprivileged. One manifestation of this inequity is the lack of qualified teachers in many urban and rural schools to teach certain subjects such as science, mathematics, and technology. The purpose of this article is to describe a partnership model between two major institutions (The American Museum of Natural History and The City University of New York) and the program designed to improve the way teachers are trained and children are taught and introduced to the world of science. These two institutions have partnered on various projects over the years to expand educational opportunity especially in the teaching of science. One of the more successful projects is Seminars on Science (SoS), an online teacher education and professional development program, that connects teachers across the United States and around the world to cutting-edge research and provides them with powerful classroom resources. This article provides the institutional perspectives, the challenges and the strategies that fostered this partnership.


1993 ◽  
Vol 28 (10) ◽  
pp. 1-8 ◽  
Author(s):  
A. Gaber ◽  
M. Antill ◽  
W. Kimball ◽  
R. Abdel Wahab

The implementation of urban village wastewater treatment plants in developing countries has historically been primarily a function of appropriate technology choice and deciding which of the many needy communities should receive the available funding and priority attention. Usually this process is driven by an outside funding agency who views the planning, design, and construction steps as relatively insignificant milestones in the overall effort required to quickly better a community's sanitary drainage problems. With the exception of very small scale type sanitation projects which have relatively simple replication steps, the development emphasis tends to be on the final treatment plant product with little or no attention specifically focused on community participation and institutionalizing national and local policies and procedures needed for future locally sponsored facilities replication. In contrast to this, the Government of Egypt (GOE) enacted a fresh approach through a Local Development Program with the United States AID program. An overview is presented of the guiding principals of the program which produced the first 24 working wastewater systems including gravity sewers, sewage pumping stations and wastewater treatment plants which were designed and constructed by local entities in Egypt. The wastewater projects cover five different treatment technologies implemented in both delta and desert regions.


2021 ◽  
pp. 1-10
Author(s):  
Troy Howe ◽  
Steve Howe ◽  
Jack Miller

Author(s):  
Nicolas Bellomo ◽  
Mirko Magarotto ◽  
Marco Manente ◽  
Fabio Trezzolani ◽  
Riccardo Mantellato ◽  
...  

AbstractREGULUS is an Iodine-based electric propulsion system. It has been designed and manufactured at the Italian company Technology for Propulsion and Innovation SpA (T4i). REGULUS integrates the Magnetically Enhanced Plasma Thruster (MEPT) and its subsystems, namely electronics, fluidic, and thermo-structural in a volume of 1.5 U. The mass envelope is 2.5 kg, including propellant. REGULUS targets CubeSat platforms larger than 6 U and CubeSat carriers. A thrust T = 0.60 mN and a specific impulse Isp = 600 s are achieved with an input power of P = 50 W; the nominal total impulse is Itot = 3000 Ns. REGULUS has been integrated on-board of the UniSat-7 satellite and its In-orbit Demonstration (IoD) is currently ongoing. The principal topics addressed in this work are: (i) design of REGULUS, (ii) comparison of the propulsive performance obtained operating the MEPT with different propellants, namely Xenon and Iodine, (iii) qualification and acceptance tests, (iv) plume analysis, (v) the IoD.


2000 ◽  
Vol 2 (3) ◽  
pp. 213-217

Working closely and cooperatively with regulatory authorities during drug development is vital to successful drug development programs. In the United States, the drug development team includes not only members of the key disciplines of drug discovery, clinical research, regulatory affairs, marketing, chemistry, toxicology, and legal aspects, but also the Food and Drug Administration (FDA). New regulations encourage meetings at the pre-investigational new drug (pre-IND), end-of-phase-2, and pre-new drug application (pre-NDA) submission phases. Appropriate informal discussions via fax and telephone are also encouraged. By proactively interacting with the FDA, the pharmaceutical industry increases the probability of a successful drug development program.


2016 ◽  
Author(s):  
Jeffrey J. Cook ◽  
Alexandra Aznar ◽  
Alexander Dane ◽  
Megan Day ◽  
Sivani Mathur ◽  
...  

2021 ◽  
Author(s):  
B. Alexander Simmons ◽  
Christoph Nolte ◽  
Jennifer McGowan

AbstractOn January 27, 2021, President Biden signed an executive order, Tackling the Climate Crisis at Home and Abroad, committing the United States to various goals within his campaign’s major climate policy, the Biden Plan for a Clean Energy Revolution and Environmental Justice. Included in this executive order is a commitment to “conserving at least 30 percent of [the United States’] lands and oceans by 2030.” This ambitious conservation target signals a promising direction for biodiversity in the United States. However, while the executive order outlines several goals for climate mitigation, the ‘30×30’ target remains vague in its objectives, actions, and implementation strategies for protecting biodiversity. Biodiversity urgently needs effective conservation action, but it remains unclear where and what this 30% target will be applied to. Achieving different climate and biodiversity objectives will require different strategies and, in combination with the associated costs of implementation, will lead to different priority areas for conservation actions. Here, we illustrate what the 30% target could look like across four objectives reflective of the ambitious goals outlined in the executive order. We compile several variations of terrestrial protected area networks guided by these different objectives and examine the trade-offs in costs, ecosystem representation, and climate mitigation potential between each. We find little congruence in priority areas across objectives, emphasizing just how crucial it will be for the Biden administration to develop clear objectives and establish appropriate performance metrics from the outset to maximize both conservation and climate outcomes in support of the 30×30 target. We discuss important considerations that must guide the administration’s conservation strategies in order to ensure meaningful conservation outcomes can be achieved over the next decade.


Author(s):  
Amy Payne

Professional development is an essential aspect of any career. Many professions have minimum standards or requirements of training each year to maintain a license and/or job. This chapter outlines the necessary components for effective professional development training in terms of technology use, and examines some reasons why certain professional development programs may be ineffective. The chapter also discusses ways to assess the overall efficiency of a professional development program and highlight some outstanding professional development programs/practices in existence. A comparison between professional development practices performed in the United States with other countries around the world is provided to offer an understanding how professional development can vary depending upon culture.


Sign in / Sign up

Export Citation Format

Share Document