Large-Eddy Simulation of Unsteady Surface Pressure Over a Low-Pressure Turbine Blade due to Interactions of Passing Wakes and Inflexional Boundary Layer

2005 ◽  
Vol 128 (2) ◽  
pp. 221-231 ◽  
Author(s):  
S. Sarkar ◽  
Peter R. Voke

The unsteady pressure over the suction surface of a modern low-pressure (LP) turbine blade subjected to periodically passing wakes from a moving bar wake generator is described. The results presented are a part of detailed large-eddy simulation (LES) following earlier experiments over the T106 profile for a Reynolds number of 1.6×105 (based on the chord and exit velocity) and the cascade pitch to chord ratio of 0.8. The present LES uses coupled simulations of cylinder for wake, providing four-dimensional inflow conditions for successor simulations of wake interactions with the blade. The three-dimensional, time-dependent, incompressible Navier-Stokes equations in fully covariant form are solved with 2.4×106 grid points for the cascade and 3.05×106 grid points for the cylinder using a symmetry-preserving finite difference scheme of second-order spatial and temporal accuracy. A separation bubble on the suction surface of the blade was found to form under the steady state condition. Pressure fluctuations of large amplitude appear on the suction surface as the wake passes over the separation region. Enhanced receptivity of perturbations associated with the inflexional velocity profile is the cause of instability and coherent vortices appear over the rear half of the suction surface by the rollup of shear layer via Kelvin-Helmholtz (KH) mechanism. Once these vortices are formed, the steady-flow separation changes remarkably. These coherent structures embedded in the boundary layer amplify before breakdown while traveling downstream with a convective speed of about 37% of the local free-stream speed. The vortices play an important role in the generation of turbulence and thus to decide the transitional length, which becomes time dependent. The source of the pressure fluctuations on the rear part of the suction surface is also identified as the formation of these coherent structures. When compared with experiments, it reveals that LES is worth pursuing as an understanding of the eddy motions and interactions is of vital importance for the problem.

Author(s):  
S. Sarkar ◽  
Peter R. Voke

The unsteady pressure over the suction surface of a modern low-pressure (LP) turbine blade subjected to periodically passing wakes from a moving bar wake generator is described. The results presented are a part of detailed Large-Eddy Simulation (LES) following earlier experiments over the T106 profile for a Reynolds number of 1.6×105 (based on the chord and exit velocity) and the cascade pitch to chord ratio of 0.8. The present LES uses coupled simulations of cylinder for wake, providing four-dimensional inflow conditions for successor simulations of wake interactions with the blade. The three-dimensional, time-dependent, incompressible Navier-Stokes equations in fully covariant form are solved with 2.4×106 grid points for the cascade and 3.05×106 grid points for the cylinder using a symmetry-preserving finite difference scheme of second-order spatial and temporal accuracy. A separation bubble on the suction surface of the blade was found to form under the steady state condition. Pressure fluctuations of large amplitude appear on the suction surface as the wake passes over the separation region. Enhanced receptivity of perturbations associated with the inflexional velocity profile is the cause of instability and coherent vortices appear over the rear half of the suction surface by the rollup of shear layer via Kelvin-Helmholtz (K-H) mechanism. Once these vortices are formed, the steady-flow separation changes remarkably. These coherent structures embedded in the boundary amplify before breakdown while traveling downstream with a convective speed of about 37 percent of the local free-stream speed. The vortices play an important role in the generation of turbulence and thus to decide the transitional length, which becomes time-dependent. The source of the pressure fluctuations on the rear part of the suction surface is also identified as the formation of these coherent structures. When compared with experiments, it reveals that LES is worth pursuing as an understanding of the eddy motions and interactions is of vital importance for the problem.


Author(s):  
Ashley D. Scillitoe ◽  
Paul G. Tucker ◽  
Paolo Adami

Large Eddy Simulation (LES) is used to explore the boundary layer transition mechanisms in two rectilinear compressor cascades. To reduce numerical dissipation, a novel locally adaptive smoothing scheme is added to an unstructured finite-volume solver. The performance of a number of Sub-Grid Scale (SGS) models is explored. With the first cascade, numerical results at two different freestream turbulence intensities (Ti’s), 3.25% and 10%, are compared. At both Ti’s, time-averaged skin-friction and pressure coefficient distributions agree well with previous Direct Numerical Simulations (DNS). At Ti = 3.25%, separation induced transition occurs on the suction surface, whilst it is bypassed on the pressure surface. The pressure surface transition is dominated by modes originating from the convection of Tollmien-Schlichting waves by Klebanoff streaks. However, they do not resembled a classical bypass transition. Instead, they display characteristics of the “overlap” and “inner” transition modes observed in the previous DNS. At Ti = 10%, classical bypass transition occurs, with Klebanoff streaks incepting turbulent spots. With the second cascade, the influence of unsteady wakes on transition is examined. Wake-amplified Klebanoff streaks were found to instigate turbulent spots, which periodically shorten the suction surface separation bubble. The celerity line corresponding to 70% of the free-stream velocity, which is associated with the convection speed of the amplified Klebanoff streaks, was found to be important.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yousef Kanani ◽  
Sumanta Acharya ◽  
Forrest Ames

Abstract High Reynolds flow over a nozzle guide-vane with elevated inflow turbulence was simulated using wall-resolved large eddy simulation (LES). The simulations were undertaken at an exit Reynolds number of 0.5 × 106 and inflow turbulence levels of 0.7% and 7.9% and for uniform heat-flux boundary conditions corresponding to the measurements of Varty and Ames (2016, “Experimental Heat Transfer Distributions Over an Aft Loaded Vane With a Large Leading Edge at Very High Turbulence Levels,” ASME Paper No. IMECE2016-67029). The predicted heat transfer distribution over the vane is in excellent agreement with measurements. At higher freestream turbulence, the simulations accurately capture the laminar heat transfer augmentation on the pressure surface and the transition to turbulence on the suction surface. The bypass transition on the suction surface is preceded by boundary layer streaks formed under the external forcing of freestream disturbances which breakdown to turbulence through inner-mode secondary instabilities. Underneath the locally formed turbulent spot, heat transfer coefficient spikes and generally follows the same pattern as the turbulent spot. The details of the flow and temperature fields on the suction side are characterized, and first- and second-order statistics are documented. The turbulent Prandtl number in the boundary layer is generally in the range of 0.7–1, but decays rapidly near the wall.


Author(s):  
Yousef Kanani ◽  
Sumanta Acharya ◽  
Forrest Ames

Abstract High Reynolds flow over a nozzle guide-vane with elevated inflow turbulence was simulated using wall-resolved large eddy simulation (LES). The simulations were undertaken at an exit Reynolds number of 0.5×106 and inflow turbulence levels of 0.7% and 7.9% and for uniform heat-flux boundary conditions corresponding to the measurements of (Varty, J. W., and Ames, F. E., 2016, ASME Paper No. IMECE2016-67029). The predicted heat transfer distribution over the vane is in excellent agreement with measurements. At higher freestream turbulence, the simulations accurately capture the laminar heat transfer augmentation on the pressure surface and the transition to turbulence on the suction surface. The bypass transition on the suction surface is preceded by boundary layer streaks formed under the external forcing of freestream disturbances which breakdown to turbulence through inner mode secondary instabilities. Underneath the locally formed turbulent spot, heat transfer coefficient spikes and generally follows the same pattern as the turbulent spot. The details of the flow and temperature fields on the suction side are characterized and first and second order statistics are documented. The turbulent Prandtl number in the boundary layer is generally in the range of 0.7–1, but decays rapidly near the wall.


Author(s):  
S. Sarkar

An attempt is made to describe the physical mechanism of transition of an inflexional boundary layer over the suction surface of a highly cambered low-pressure (LP) turbine blade influenced by the periodic passing wakes. Large-eddy simulations (LES) of wake passing over the T106 profile for a Reynolds number of 1.6×105 (based on the chord and exit velocity) are performed using wake data extracted from precursor simulations of cylinder replacing a moving bar in front of the cascade. The three-dimensional, time-dependent, incompressible Navier-Stokes equations in fully covariant form are solved using a symmetry-preserving finite difference scheme of second-order spatial and temporal accuracy. The present LES results are compared with experiments and DNS. The operating condition of a high-lift LP turbine blade leads to the formation of a separation bubble on the suction side. The interactions of incoming wake with this separation bubble complicate the transition process. Enhanced receptivity of inflexional boundary layer causes amplification of the perturbations produced by the passing wake leading to the formation of coherent vortices within the boundary layer. The transition mechanism during the wake-induced path is highly influenced by the convection and breakdown of these coherent vortices. Streamwise evolution of turbulent kinetic energy and production illustrates that these vortices play an important role in generation of turbulence and thus to decide the transitional length, which becomes time-dependent. LES results resolve a multimoded transition on the suction surface and the calmed region. The calmed region is nothing but an attached flow with low production as the boundary layer tends to relax after wake passing; the level of turbulent intensity suggests that the boundary layer is in a state of transition rather than laminarized.


Author(s):  
S. Katiyar ◽  
S. Sarkar

Abstract A large-eddy simulation (LES) is employed here to predict the flow field over the suction surface of a controlled-diffusion (C-D) compressor stator blade following the experiment of Hobson et al. [1]. When compared with the experiment, LES depicts a separation bubble (SB) in the mid-chord region of the suction surface, although discrepancies exist in Cp. Further, the LES resolves the growth of boundary layer over the mid-chord and levels of turbulence intensity with an acceptable limit. What is noteworthy that LES also resolves a tiny SB near the leading-edge at the designed inflow angle of 38.3°. The objective of the present study is to assess how this leading-edge bubble influences the transition and development of boundary layer on the suction surface before the mid-chord. It appears that the separation at leading-edge suddenly enhances the perturbation levels exciting development of boundary layer downstream. The boundary layer becomes pre-transitional followed by a decay of fluctuations up to 30% of chord attributing to the local flow acceleration. Further, the boundary layer appears like laminar after being relaxed from the leading edge excitation near the mid-chord. It separates again because of the adverse pressure gradient, depicting augmentation of turbulence followed by the breakdown at about 70% of chord.


Author(s):  
Pranab Mondal ◽  
Joseph Mathew

A methodology for large eddy simulation (LES) of a turbomachine stage is presented. Computations of mean fields (RANS) of stages may be performed separately of rotor and stator rows by providing an averaged solution as input to the down-stream row. In unsteady simulations, unsteady field information must be exchanged in both directions after every time step. Here a procedure for linear cascade simulations of a stage has been implemented in a high-resolution compressible flow solver for LES. The LES uses an explicit filtering method for sub-grid-scale modelling. Grids overlap at the interface between blade rows. Field data is transferred in both directions. Rotor velocity is added or subtracted as needed to tangential velocity component during this transfer. The relative movement of the rotor and stator grids is accounted for by suitable periodic tangential shifting of the paired grid points in the overlap for the transfer. The method has been tested against a published DNS of a statorrotor stage. The Reynolds number based on blade chord and mean axial velocity at inflow was 40000. Solution fields show the wake vortex street of the upstream blade row impinging on downstream blades and being convected through the downstream blade passage. The LES captured transition on rotor blade surface boundary layers. Blade surface pressure distributions agree closely on pressure surfaces. Separation and transition on downstream blade suction surface is delayed slightly at the present resolution, but this will improve with grid refinement, monotonically, for this LES method.


Sign in / Sign up

Export Citation Format

Share Document