A Methodology for Assessing Fuel Cell Performance Under a Wide Range of Operational Conditions: Results for Single Cells

2006 ◽  
Vol 3 (3) ◽  
pp. 226-233 ◽  
Author(s):  
Andrea Baratella ◽  
Roberto Bove ◽  
Piero Lunghi

Testing the performance of fuel cells is an important key for verifying technology improvements and for demonstrating their potential. However, due to the novelty of this technology, there is not a standardized procedure for testing fuel cell performance. In order to fully investigate fuel cell performance, the behavior must be known under a wide range of operational conditions. Furthermore, in order to compare results coming from different test teams, a set of procedures and parameters to evaluate single cell performance should be defined. The research group of the Fuel Cell Laboratory of the University of Perugia is conducting performance tests on single cells, focusing on defining test procedures to find effective parameters to be used to compare tests performed by different teams. This work demonstrates how the testing parameters developed by the team allow one to perform advanced control on test procedures, to understand test results, and to compare them with tests carried out under different operational conditions. The entire analysis is easily conducted by using a single parameter variation hyperspace approach. The experimental results obtained on single fuel cells are reported.

2014 ◽  
Vol 4 (5) ◽  
pp. 1400-1406 ◽  
Author(s):  
Yuta Nabae ◽  
Mayu Sonoda ◽  
Chiharu Yamauchi ◽  
Yo Hosaka ◽  
Ayano Isoda ◽  
...  

A Pt-free cathode catalyst for polymer electrolyte membrane fuel cells has been developed by multi-step pyrolysis of Fe phthalocyanine and phenolic resin and shows a quite promising fuel cell performance.


Author(s):  
Luis Breziner ◽  
Peter Strahs ◽  
Parsaoran Hutapea

The objective of this research is to analyze the effects of vibration on the performance of hydrogen PEM fuel cells. It has been reported that if the liquid water transport across the gas diffusion layer (GDL) changes, so does the overall cell performance. Since many fuel cells operate under a vibrating environment –as in the case of automotive applications, this may influence the liquid water concentration across the GDL at different current densities, affecting the overall fuel cell performance. The problem was developed in two main steps. First, the basis for an analytical model was established using current models for water transport in porous media. Then, a series of experiments were carried, monitoring the performance of the fuel cell for different parameters of oscillation. For sinusoidal vibration at 10, 20 and 50Hz (2 g of magnitude), a decrease in the fuel cell performance by 2.2%, 1.1% and 1.3% was recorded when compared to operation at no vibration respectively. For 5 g of magnitude, the fuel cell reported a drop of 5.8% at 50 Hz, whereas at 20 Hz the performance increased by 1.3%. Although more extensive experimentation is needed to identify a relationship between magnitude and frequency of vibration affecting the performance of the fuel cell as well as a throughout examination of the liquid water formation in the cathode, this study shows that sinusoidal vibration, overall, affects the performance of PEM fuel cells.


Author(s):  
Piero Lunghi ◽  
Gianni Bidini

Fuel cells are known to be efficient and environmental friendly electricity generation devices. Great expectations are put on their contribution for future ultra-clean energy production. Nevertheless, the requests from deregulated energy market prompt fast commercialization of systems that are not yet fully optimized. Low efficiencies of first generation commercial fuel cell plants could result in failure when satisfying end users’ requirements thus creating an obstacle for subsequent market penetration. In this context, the availability of reliable data on fuel cells, necessary for their correct integration in full energy systems for plant optimization and feasibility assessment constitutes a priority. On the other hand, while measuring fuel cells performance is a difficult task nevertheless within reach for most research departments; the challenge for the scientific community is to reliably assess performance dependence on all the most relevant input parameters. As a result, most of the experimental data find on literature on fuel cells performances refer to voltage measures at increasing currents for fixed gas compositions and flow rates. In this work an experimental facility has been set up, test rigs have been designed and constructed both for fuel cells and reforming section testing; the main aim was to allow great operational flexibility. Great attention has been paid on test procedures and on input parameterisation as well on reliable advanced control systems. Dependence on the most relevant input parameters, i.e. current density, operating temperature, fuel and oxidant utilization factor, fuel humidification and dilution has been deeply analysed. Performances have been analysed both in terms of output voltage and efficiency and in terms of time degradation and expected total lifetime. The contribution of the work done consist in defining adimensional parameters which, thanks to their direct relation with the theoretical equations which govern a fuel cell, can greatly improve performance evaluation capability of experimental tests. Moreover those parameters can represent a way to standardize test procedures and constitute a means for comparing and exchanging results in a easier and effective way. A second contribution consist in designing and developing a unique control system that can improve test reliability thanks to the feature that allows to change single parameters while keeping the others constant and greatly enhance the number of experimental points that can be obtained in a test.


Author(s):  
Alton J. Reich ◽  
Rupak Das ◽  
J. Vernon Cole ◽  
Sandip Mazumder

Fuel cells have been utilized in certain specialized applications since the 1960’s, however the technology has recently been the focus of a broad research and development effort. The next 10 years will likely produce practical, affordable fuel cells that are applied in fixed power generation, automotive, and even powered bicycle applications. As the fuel cell becomes less of a research curiosity and more of an engineered commodity item, designers need tools to study and optimize the behavior of fuel cells. This paper discusses some of the questions that simulation can help fuel cell designers address.


Author(s):  
C. T. Wang ◽  
C. P. Chang ◽  
C. K. Shaw ◽  
J. Y. Cheng

Fuel cells possessing high potency and low pollution are well known and are considered the new generation of power technology. This study presents a novel bionic concept flow slab design to improve fuel cell performance. A series of 2D simulations was executed at Re=10 and 100 for the bionic flow and traditional flow slabs. In addition, the effect of aspect ratio was studied using 3D simulation. Numerical results obtained show that this novel bionic flow slab design will exhibit better performance than traditional flow slabs regardless of Reynolds numbers and aspect ratios because it possesses a more uniform velocity and a lower pressure drop. Finally, the performance in the bionic flow slab’s reaction area was determined to be superior. These findings show that the bionic concept and flow slab design addressed in this paper will be useful in enhancing fuel cell performance.


Author(s):  
Stefano Cordiner ◽  
Massimo Feola ◽  
Vincenzo Mulone ◽  
Fabio Romanelli

Efficient and low polluting production of electricity and heat is an issue which cannot be postponed. Fuel cells, which convert the chemical energy stored in a fuel into electrical and thermal energy, are an efficient solution for such a problem. These devices rely on the combination of hydrogen and oxygen into water: oxygen is extracted from the air while hydrogen can be obtained from either fossil fuels or renewable sources. The use of biomass as hydrogen source in connection with fuel cells is an argument of particular interest, since high temperature gasification processes are actually utilized. Solid Oxide Fuel Cells (SOFC), working at high temperatures, have become therefore an interesting candidate to realize the internal reforming of the feed gas from a gasifier. The reforming reaction occurs at the anode of the SOFC, upstream and separated from the fuel cell reaction. The section of the anode where reforming occurs is adjacent to the section where electrochemical reaction occurs. So, heat produced by the electrochemical reaction can be transferred internally with minimal losses. Simulation models of the performance of SOFC stacks and biomass gasifiers are useful to visualize temperature, current and concentration distributions, which are difficult to measure by experimental techniques, allowing the definition of optimal choices in terms of geometries and operating conditions. In this work, an analysis of a SOFC coupled with a biomass gasifier is performed. The objective of this study is the identification of the main effects of the operating conditions on the fuel cell performance in terms of efficiency, and the distribution of the main electro-thermal-fluid-dynamics variables, namely current and temperature. A gasifier model has been implemented to calculate the equilibrium compositions using the Gibbs free energy minimization method. The obtained results are directly used to estimate the inlet gas composition for the SOFC. The SOFC has been modelled by a 3D approach (FLUENT), which solves the energy and mass transport and the internal reforming, coupled with a 0D electrolyte model which, starting from the local information in terms of gas composition, temperature and pressure, is able to predict the fuel cell performance in terms of electrical response and mass-energy fluxes. The whole model has been applied to the analysis of an integrated SOFC-gasifier system to address a planar SOFC response by varying the gasifier operating conditions and the global system performance.


2015 ◽  
Vol 3 (20) ◽  
pp. 10864-10874 ◽  
Author(s):  
Florian Mack ◽  
Karin Aniol ◽  
Corina Ellwein ◽  
Jochen Kerres ◽  
Roswitha Zeis

We present novel acid–base blend membranes with improved chemical stability and competitive fuel cell performance compared to conventional PBI membranes.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5440 ◽  
Author(s):  
Khadijeh Hooshyari ◽  
Bahman Amini Horri ◽  
Hamid Abdoli ◽  
Mohsen Fallah Vostakola ◽  
Parvaneh Kakavand ◽  
...  

This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.


Author(s):  
Kang Wang ◽  
Pingying Zeng ◽  
Jeongmin Ahn

This work presents the performance of YSZ-SDC multilayered anode-supported solid oxide fuel cell (AS-SOFC). The anode-supported SOFC showed an extraordinary fuel cell performance of ∼1.57 W/cm2 by wet spraying a SDC layer onto YSZ layer. It was found that the fuel cell performance varied with the sintering temperature of fuel cell. At the high sintering temperatures, the reactions between YSZ and SDC have a significant effect on the fuel cell performance.


Sign in / Sign up

Export Citation Format

Share Document