A Practical Approach for the Linearization of the Constrained Multibody Dynamics Equations

2006 ◽  
Vol 1 (3) ◽  
pp. 230-239 ◽  
Author(s):  
Dan Negrut ◽  
Jose L. Ortiz

The paper presents an approach to linearize the set of index 3 nonlinear differential algebraic equations that govern the dynamics of constrained mechanical systems. The proposed method handles heterogeneous systems that might contain flexible bodies, friction, control elements (user-defined differential equations), and nonholonomic constraints. Analytically equivalent to a state-space formulation of the system dynamics in Lagrangian coordinates, the proposed method augments the governing equations and then computes a set of sensitivities that provide the linearization of interest. The attributes associated with the method are the ability to handle large heterogeneous systems, ability to linearize the system in terms of arbitrary user-defined coordinates, and straightforward implementation. The proposed approach has been released in the 2005 version of the MSC.ADAMS/Solver(C++) and compares favorably with a reference method previously available. The approach was also validated against MSC.NASTRAN and experimental results.

2012 ◽  
Vol 79 (4) ◽  
Author(s):  
David J. Braun ◽  
Michael Goldfarb

This paper presents an explicit to integrate differential algebraic equations (DAEs) method for simulations of constrained mechanical systems modeled with holonomic and nonholonomic constraints. The proposed DAE integrator is based on the equation of constrained motion developed in Part I of this work, which is discretized here using explicit ordinary differential equation schemes and applied to solve two nontrivial examples. The obtained results show that this integrator allows one to precisely solve constrained mechanical systems through long time periods. Unlike many other implicit DAE solvers which utilize iterative constraint correction, the presented DAE integrator is explicit, and it does not use any iteration. As a direct consequence, the present formulation is simple to implement, and is also well suited for real-time applications.


Author(s):  
Keisuke Kamiya ◽  
Makoto Sawada ◽  
Yuji Furusawa

The governing equations for multibody systems are, in general, formulated in the form of differential algebraic equations (DAEs) involving the Lagrange multipliers. It is desirable for efficient and accurate analysis to eliminate the Lagrange multipliers and dependent variables. As a method to solve the DAEs by eliminating the Lagrange multipliers, there is a method called the null space method. In this report, first, it is shown that using the null space matrix one can eliminate the Lagrange multipliers and reduce the number of velocities to that of the independent ones. Then, a new method to obtain the continuous null space matrix is presented. Finally, the presented method is applied to four-bar linkages.


Author(s):  
Keisuke Kamiya

The governing equations of multibody systems are, in general, formulated in the form of differential algebraic equations (DAEs) involving the Lagrange multipliers. For efficient and accurate analysis, it is desirable to eliminate the Lagrange multipliers and dependent variables. Methods called null space method and Maggi’s method eliminate the Lagrange multipliers by using the null space matrix for the coefficient matrix which appears in the constraint equation in velocity level. In a previous report, the author presented a method to obtain a time differentiable null space matrix for scleronomic systems, whose constraint does not depend on time explicitly. In this report, the method is generalized to rheonomic systems, whose constraint depends on time explicitly. Finally, the presented method is applied to four-bar linkages.


2003 ◽  
Vol 25 (3) ◽  
pp. 170-185
Author(s):  
Dinh Van Phong

The article deals with the problem of consistent initial values of the system of equations of motion which has the form of the system of differential-algebraic equations. Direct treating the equations of mechanical systems with particular properties enables to study the system of DAE in a more flexible approach. Algorithms and examples are shown in order to illustrate the considered technique.


1999 ◽  
Author(s):  
Marwan Bikdash ◽  
Richard A. Layton

Abstract Guidelines toward an energy-based, linear analysis of discrete physical systems are presented, based on previous work in systematic modeling using Lagrangian differential-algebraic equations (DAEs). Recent work in this area is extended by accommodating nonholonomic constraints and explicit inputs. An equilibrium postulate is proposed and equilibrium is characterized for static and steady-state conditions. Lagrangian DAEs are linearized using a local, indirect approach. Alternate descriptor formulations leading to different linear singular systems are compared and one formulation is determined to be a good foundation for future work in linear analysis using Lagrangian DAEs.


Author(s):  
Keisuke Kamiya ◽  
Yusaku Yamashita

The governing equations of multibody systems are, in general, formulated in the form of differential algebraic equations (DAEs) involving the Lagrange multipliers. For efficient and accurate analysis, it is desirable to eliminate the Lagrange multipliers and dependent variables. Methods called null space method and Maggi’s method eliminate the Lagrange multipliers by using the null space matrix for the constraint Jacobian. In previous reports, one of the authors presented methods which use the null space matrix. In the procedure to obtain the null space matrix, the inverse of a matrix whose regularity may not be always guaranteed. In this report, a new method is proposed in which the null space matrix is obtained by solving differential equations that can be always defined by using the QR decomposition, even if the constraints are redundant. Examples of numerical analysis are shown to validate the proposed method.


2003 ◽  
Vol 125 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Ju Seok Kang ◽  
Sangwoo Bae ◽  
Jang Moo Lee ◽  
Tae Oh Tak

The purpose of this study is to derive a linearized form of dynamic equations for constrained mechanical systems. The governing equations for constrained mechanical systems are generally expressed in terms of Differential-Algebraic Equations (DAEs). Conventional methods of linearization are based on the perturbation of the nonlinear DAE, where small amounts of perturbations are taken to guarantee linear characteristics of the equations. On the other hand, the proposed linearized dynamic equations are derived directly from a force equilibrium condition, not from the DAEs, with small motion assumption. This approach is straightforward and simple compared to conventional perturbation methods, and can be applicable to any constrained mechanical systems that undergo small displacement under external forces. The modeling procedure and formulation of linearized dynamic equations are demonstrated by the example of a vehicle suspension system, a typical constrained multibody system. The solution is validated by comparison with conventional nonlinear dynamic analysis and modal test results.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaochao Su ◽  
Lei Hou ◽  
Zhubing Zhu ◽  
Yushu Chen

This paper presents a multibody modeling method for seismic analysis of UHV porcelain surge arresters equipped with a kind of seismic isolation device. An UHV arrester is modeled as a planar multibody system whose number of DOF is equal to the number of the arrester units. Joint coordinate method is adopted to construct the governing equations of motion. The seismic isolation device utilizing a number of lead alloy dampers as its core energy dissipation components is also investigated. An analytical model of this device is given by modeling each lead alloy damper as a hysteretic spring and reducing the entire device to a planar system consisting of a range of hysteretic springs. Its mechanical characteristic is derived theoretically, and the obtained moment-angle relationship is expressed as a system of differential algebraic equations. The initial rotational stiffness of the device is formulated in terms of the structural and mechanical parameters of the device. This analytic expression is used in estimating the fundamental frequency of the isolated equipment. By this modeling method, it is easy to construct the governing equations of motion for the isolated system. An UHV arrester specimen is analyzed by this proposed method. The effectiveness of the isolation device in terms of reducing the internal base moment is significant and the influence of system parameters on the effectiveness is also discussed. The proposed method shows its potential usefulness in optimal design of the isolation device.


Author(s):  
Shilpa A. Vaze ◽  
Prakash Krishnaswami ◽  
James DeVault

Simulation methods for electromechanical systems should accommodate their interdisciplinary nature and the fact that these systems often display qualitative changes in system behavior during operation, such as saturation effects and changes in kinematic structure. Current approaches are either based on deriving the system equations by applying a single formulation to all problem domains, or they are based on trying to integrate different software packages/modules to solve the interdisciplinary problem. In this paper, we present a component-based approach which allows the governing equations of each component to be defined in terms of its natural variables. The different component equations are then brought together to form a single system of differential-algebraic equations (DAE’s), which can be numerically solved to obtain the system response. The fact that we have an explicit, unified form of the system governing equations means that this formulation can be easily extended to design sensitivity analysis and optimization of electromechanical systems (EMS). The formulation includes monitor functions which can be used to detect when a qualitative system change has occurred, and to switch to a new set of governing equations to reflect this change. A single step integrator is used to make it easier to switch to a new system behavior, since this will always require a restart of the integrator. There is considerable flexibility in how the components can be defined, and connections between components are themselves modeled as special types of components. Examples of components from the mechanical and electrical side are presented, and two numerical examples are solved to illustrate the efficacy of the proposed method. One example is a link that is driven by a DC motor through a gearbox. The results of this example were verified against Simulink, and good agreement was observed. The second example is a motor driven slider-crank mechanism. The method can be extended to include components from any domain, such as hydraulics, thermal, controls, etc., as long as the governing equations can be written as DAE’s.


Transport ◽  
2002 ◽  
Vol 17 (3) ◽  
pp. 103-107 ◽  
Author(s):  
Wojciech Blajer ◽  
Jacek A. Goszczyński ◽  
Mariusz Krawczyk

This paper presents a uniform approach to the modelling and simulation of aircraft prescribed trajectory flight. The aircraft motion is specified by a trajectory in space, a condition on airframe attitude with respect to the trajectory, and a desired flight velocity variation. For an aircraft controlled by aileron, elevator and rudder deflections and thrust changes a tangent realization of trajectory constraints arises which yields two additional constraints on the airframe attitude with respect to the trajectory. Combining the program constraint conditions and aircraft dynamic equations the governing equations of programmed motion are developed in the form of differential-algebraic equations. A method for solving the equations is proposed. The solution consists of time variations of the aircraft state variables and the demanded control that ensures the programmed motion realization.


Sign in / Sign up

Export Citation Format

Share Document