Compressive Properties of Mouse Articular Cartilage Determined in a Novel Micro-Indentation Test Method and Biphasic Finite Element Model

2006 ◽  
Vol 128 (5) ◽  
pp. 766-771 ◽  
Author(s):  
Li Cao ◽  
Inchan Youn ◽  
Farshid Guilak ◽  
Lori A Setton

The mechanical properties of articular cartilage serve as important measures of tissue function or degeneration, and are known to change significantly with osteoarthritis. Interest in small animal and mouse models of osteoarthritis has increased as studies reveal the importance of genetic background in determining predisposition to osteoarthritis. While indentation testing provides a method of determining cartilage mechanical properties in situ, it has been of limited value in studying mouse joints due to the relatively small size of the joint and thickness of the cartilage layer. In this study, we developed a micro-indentation testing system to determine the compressive and biphasic mechanical properties of cartilage in the small joints of the mouse. A nonlinear optimization program employing a genetic algorithm for parameter estimation, combined with a biphasic finite element model of the micro-indentation test, was developed to obtain the biphasic, compressive material properties of articular cartilage. The creep response and material properties of lateral tibial plateau cartilage were obtained for wild-type mouse knee joints, by the micro-indentation testing and optimization algorithm. The newly developed genetic algorithm was found to be efficient and accurate when used with the finite element simulations for nonlinear optimization to the experimental creep data. The biphasic mechanical properties of mouse cartilage in compression (average values: Young’s modulus, 2.0MPa; Poisson’s ratio, 0.20; and hydraulic permeability, 1.1×10−16m4∕N‐s) were found to be of similar orders of magnitude as previous findings for other animal cartilages, including human, bovine, rat, and rabbit and demonstrate the utility of the new test methods. This study provides the first available data for biphasic compressive properties in mouse cartilage and suggests a promising method for detecting altered cartilage mechanics in small animal models of osteoarthritis.

Author(s):  
F H Dar ◽  
R M Aspden

The stiffness of articular cartilage increases dramatically with increasing rate of loading, and it has been hypothesized that increasing the stiffness of the subchondral bone may result in damaging stresses being generated in the articular cartilage. Despite the interdependence of these tissues in a joint, little is understood of the effect of such changes in one tissue on stresses generated in another. To investigate this, a parametric finite element model of an idealized joint was developed. The model incorporated layers representing articular cartilage, calcified cartilage, the subchondral bone plate and cancellous bone. Taguchi factorial design techniques, employing a two-level full-factorial and a four-level fractional factorial design, were used to vary the material properties and thicknesses of the layers over the wide range of values found in the literature. The effects on the maximum values of von Mises stress in each of the tissues are reported here. The stiffness of the cartilage was the main factor that determined the stress in the articular cartilage. This, and the thickness of the cartilage, also had the largest effect on the stresses in all the other tissues with the exception of the subchondral bone plate, in which stresses were dominated by its own stiffness. The stiffness of the underlying subchondral bone had no effect on the stresses generated in the cartilage. This study shows how stresses in the various tissues are affected by changes in their mechanical properties and thicknesses. It also demonstrates the benefits of a structured, systematic approach to investigating parameter variation in finite element models.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaohui Zhang ◽  
Shuo Yuan ◽  
Jun Wang ◽  
Bagen Liao ◽  
De Liang

Abstract Background Recent studies have pointed out that arthroscopy, the commonly-used surgical procedure for meniscal tears, may lead to an elevated risk of knee osteoarthritis (KOA). The biomechanical factors of KOA can be clarified by the biomechanical analysis after arthroscopic partial meniscectomy (APM). This study aimed to elucidate the cartilage stress and meniscus displacement of the tibiofemoral joint under flexion and rotation loads after APM. Methods A detailed finite element model of the knee bone, cartilage, meniscus, and major ligaments was established by combining computed tomography and magnetic resonance images. Vertical load and front load were applied to simulate different knee buckling angles. At the same time, by simulating flexion of different degrees and internal and external rotations, the stresses on tibiofemoral articular cartilage and meniscus displacement were evaluated. Results Generally, the contact stress on both the femoral tibial articular cartilage and the meniscus increased with the increased flexion degree. Moreover, the maximum stress on the tibial plateau gradually moved backward. The maximum position shift value of the lateral meniscus was larger than that of the medial meniscus. Conclusion Our finite element model provides a realistic three-dimensional model to evaluate the influence of different joint range of motion and rotating tibiofemoral joint stress distribution. The decreased displacement of the medial meniscus may explain the higher pressure on the knee components. These characteristics of the medial tibiofemoral joint indicate the potential biomechanical risk of knee degeneration.


2002 ◽  
Vol 124 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Tammy L. Haut Donahue ◽  
M. L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (i.e., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.


2017 ◽  
Vol 730 ◽  
pp. 548-553
Author(s):  
Jing Ge ◽  
Hao Jiang ◽  
Zhen Yu Sun ◽  
Guo Jun Yu ◽  
Bo Su ◽  
...  

In this paper, we establish the mechanical property analysis of Single-walled Carbon Nanotubes (SWCNTs) modified beam element model based on the molecular structural mechanics method. Then we study the mechanical properties of their radial direction characteristics using the finite element software Abaqus. The model simulated the different bending stiffness with rectangular section beam elements C-C chemical force field. When the graphene curled into arbitrary chirality of SWCNTs spatial structure, the adjacent beam position will change the moment of inertia of the section of the beam. Compared with the original beam element model and the calculation results, we found that the established model largely reduced the overestimate of the original model of mechanical properties on the radial direction of the SWCNTs. At the same time, compared with other methods available in the literature results and the experimental data, the results can be in good agreement.


2019 ◽  
Vol 26 (07) ◽  
pp. 1850225
Author(s):  
YONG MA ◽  
ZHAO YANG ◽  
SHENGWANG YU ◽  
BING ZHOU ◽  
HONGJUN HEI ◽  
...  

The aim of this paper is to establish an approach to quantitatively determine the elasto-plastic parameters of the Mo-modified Ti obtained by the plasma surface alloying technique. A micro-indentation test is conducted on the surface under 10[Formula: see text]N. Considering size effects, nanoindentation tests are conducted on the cross-section with two loads of 6 and 8[Formula: see text]mN. Assuming nanoindentation testing sublayers are homogeneous, finite element reverse analysis is adopted to determine their plastic parameters. According to the gradient distributions of the elasto-plastic parameters with depth in the Mo-modified Ti, two types of mathematical expressions are proposed. Compared with the polynomial expression, the linear simplified expression does not need the graded material to be sectioned and has practical utility in the surface treatment industry. The validation of the linear simplified expression is verified by the micro-indentation test and corresponding finite element forward analysis. This approach can assist in improving the surface treatment process of the Mo-modified Ti and further enhancing its load capacity and wear resistance.


Sign in / Sign up

Export Citation Format

Share Document