Test Methods for Silicon Die Strength

2006 ◽  
Vol 128 (4) ◽  
pp. 419-426 ◽  
Author(s):  
M. Y. Tsai ◽  
C. H. Chen ◽  
C. S. Lin

Recently, the 3D or stacked-die packages become increasingly popular for packaging ICs into a system or subsystem to satisfy the needs of low cost, small form factor, and high performance. For the applications of these packages, IC silicon wafers have to be ground to be relatively thin through the wafer-thinning processes (such as grinding, polishing, and plasma etching). The strength of dies has to be determined for the design requirement and reliability assurance of the packages. From the published data, there still exist some issues, including a large scatter existed in die strength data and difficulties in differentiating the causes of the low strength between from the wafer grinding and from wafer sawing by either the three-point bending or four-point bending test. The purposes of this study are to develop new, reliable, and simple test methods for determination of die strength, in order to improve the data scatter, and to provide a solution for differentiating the factors that affect the variability of die strength for finding out the causes of the weakness of the die strength. In this study, two new test methods, point-loaded circular plate with simple supports test (PLT-I) and point-loaded plate on elastic foundation test (PLT-II), are proposed and then evaluated by testing two groups of silicon dies with different surface conditions. The surface conditions (roughness) of the specimens are determined by atomic force microscopy and correlated to failure strength. The failure forces from both tests have to be modified by using maximum stress obtained from theories or finite element analyses to obtain the failure strength. The test results are compared to each other and further with a widely used four-point bending test. The results suggest that, unlike the four-point bending test suffering the chipping effect, both methods provide very consistent data with a small scatter for each group of specimens and can be used for identifying the effect of surface grinding (roughness) on the die strength. It is also shown that the die strength is highly dependent on the surface roughness. Accordingly, these two methods can provide not only a (biaxial) stress field similar to temperature-loaded die in the packages, but also simple, feasible, reliable, and chipping-free tests for silicon dies of dummy or real IC chips, without strict geometrical limitation, such as beam-type geometry for the three-point or four-point bending test.

Author(s):  
M. Y. Tsai ◽  
C. H. Chen ◽  
C. S. Lin

Recently, the 3-D or stacked-die packages are increasingly popular for packaging ICs into a system or subsystem to satisfy the needs of low cost, small form factor, and high performance. For the applications of these packages, IC wafers have to be ground to be relatively thin through the wafers thinning processes (such as grinding, polishing, and plasma etching). The strength of dies has to be determined for the design requirement and thus assuring reliability of the packages. From the published data, there still exist some issues including a large scatter existed in die strength data, and difficulties with differentiating the causes of the low strength from the grinding or die sawing either by three-point bending or four-point bending test. The purposes of this study is to develop new, reliable and simple test methods for determination of die strength to improve the data scatter and also provide a solution for differentiating the factors that affect the variability of die strength, in order to find out the causes of the weakness of the die strength. In this study, two new test methods, point-loaded circular plate with simple supports test (PLT-I) and point-loaded plate on elastic foundation test (PLT-II) are proposed and evaluated by testing two groups of silicon dies with different surface conditions. The surface conditions (roughness) of the specimens are determined by atomic force microscopy and correlated to failure strength. The failure forces from both tests have to be modified by using maximum stress obtained from theory or finite element analysis to get the failure strength. The test results are compared with each other and further with widely-used four-point bending test. The results suggest that, unlike the four-point bending test, both methods provide very consistent data with a small scatter for these two groups of specimens, and indicated the die strength is highly dependent on the surface roughness. Accordingly, these two methods can provide not only a (bi-axial) stress field similar to temperature-loaded die in the packages, but also simple, feasible, reliable and chipping-free tests for silicon dies of dummy or real IC chips, without strict geometrical limitation, such as beam-type geometry for three-point or four-point bending test.


2015 ◽  
Vol 40 (4) ◽  
pp. 364-371 ◽  
Author(s):  
D Tantbirojn ◽  
C Fernando ◽  
A Versluis

SUMMARY Purpose When adding composite to a cured composite restoration, the intent is to achieve the same failure strength as the original restorative material. This study evaluated the failure strengths of added or repaired composite using various chemical and/or mechanical surface treatments. Methods Failure strengths were determined using a four-point bending test. Beam-shaped specimens were fabricated by adding new composite to cured composite (Filtek Supreme Ultra). The cured composites were either fresh or aged seven days (N=10-14). The composite surfaces were left unground or were ground before treatment with various combinations of roughening, acid etching, silane, and dental adhesives (conventional Adper SingleBond Plus or new multimode Scotchbond Universal) and/or tribochemistry (CoJet system). Monolithic composite specimens were the control. Failure strengths were statistically analyzed using one-way analysis of variance and the Fisher protected least significant difference (α=0.05). Results Failure strengths (mean ± standard deviation) when composite was added to unground freshly cured composites (111±25 MPa) and aged composites using a new multimode adhesive with (102±22 MPa) or without (98±22 MPa) tribochemical treatment were not significantly lower than the monolithic specimens (122±23 MPa). Grinding the surfaces of freshly cured composite significantly reduced failure strength, either with (81±30 MPa) or without (86±31 MPa) use of conventional adhesive. Failure strengths of aged composites were also significantly lower (51±21 MPa with SingleBond Plus), even after tribochemical treatment (71±29 MPa with SingleBond Plus; 73±35 MPa with Silane-Visiobond). Conclusions Using a new multimode adhesive when adding composite to freshly cured or aged composite substrates recovered the failure strength to that of the original monolithic composite.


2014 ◽  
Vol 48 (9) ◽  
pp. 2901-2913 ◽  
Author(s):  
Lily D. Poulikakos ◽  
Michel Pittet ◽  
Andre-Gilles Dumont ◽  
Manfred N. Partl

2016 ◽  
Vol 858 ◽  
pp. 208-213 ◽  
Author(s):  
Zhi Hua Li ◽  
Wei Kang Chen ◽  
Xu Zhou ◽  
Feng Quan Chen

Polyvinyl alcohol (PVA) fiber reinforced cementitious material (called PVA-ECC) has been intensively studied as a promising alternative to ordinary cement materials. While PVA-ECC has high stain capacity and ductility, its extreme high cost mainly caused by the high unit cost of used Japanese fiber has hindered its application in China. In order to reduce the cost of PVA-ECC, one type of inexpensive PVA fiber produced in China was used to develop a ductile ECC with deflection hardening and multiple cracking behaviors in this research. Compressive strength test, four-point bending test and uniaxial tension test were conducted to investigate the mechanical properties of the newly developed composites. The results show that ECC made with domestic ingredients exhibits large deformation and multiple cracking, revealing that it is feasible to produce low cost ECC material employing local PVA fibers.


2016 ◽  
Vol 821 ◽  
pp. 526-531
Author(s):  
Michal Přinosil ◽  
Petr Kabele

In the study, the bending behavior of high-performance fiber reinforced lime-based mortars is experimentally investigated using four-point bending test. From the experimental data, the influence of the mortar’s composition on its stiffness, cracking strength and ultimate strength are investigated. It is also studied, whether the response has strain-softening or strain-hardening character and whether the material exhibits multiple cracking. Such behavior is very important for the durability of the material, because it allows carrying load during imposed deformations (due to thermal effects, movements of foundations, seismicity, etc.). The number of formed cracks is examined using digital image correlation method. The mortar composition is considered with two types of binder (pure lime, lime-metakaolin), with two types of polyvinyl alcohol fibers in four volume fractions (0.5÷2.0%). As the reference, we consider two sets of specimens made of plain mortar without fiber reinforcement.


2021 ◽  
Vol 1144 (1) ◽  
pp. 012039
Author(s):  
M A Iman ◽  
N Mohamad ◽  
A A A Samad ◽  
Steafenie George ◽  
M A Tambichik ◽  
...  

2021 ◽  
pp. 152808372199377
Author(s):  
Jalil Hajrasouliha ◽  
Mohammad Sheikhzadeh

In the interest of reducing the weight and also cost of blade skins, various automatic preform manufacturing processes were developed including tape laying, filament winding and braiding. Among them, the circular braiding process was found to be an efficient method in producing seamless preforms on mandrels with various geometries. In this regard, an attempt was made to produce a carbon fiber reinforced composite with the shape of NACA 23018 airfoil using a circular braiding machine. Thus, suitable wooden mandrels were manufactured using NACA 23018 airfoil coordinates, which were obtained by assuming the perimeter of 20 cm. Furthermore, both biaxially and triaxially braided preforms were produced and subsequently impregnated with epoxy resin through an appropriate fabrication method. To assess their performance, four-point bending test was carried out on samples. Ultimately, the elastic response of braided composite airfoils was predicted using a meso-scale finite element modeling and was validated with experimental results.


Sign in / Sign up

Export Citation Format

Share Document