Solar Photolytic and Photocatalytic Disinfection of Water at Laboratory and Field Scale. Effect of the Chemical Composition of Water and Study of the Postirradiation Events

2006 ◽  
Vol 129 (1) ◽  
pp. 100-110 ◽  
Author(s):  
Angela-Guiovana Rincón ◽  
Cesar Pulgarin

Background. In recent years, there has been a growing interest in the development of new processes for water disinfection since the traditional processes, such as chlorination, can lead to the production of toxic disinfection by-products. Sunlight has been used as a method of water disinfection and heliophotocatalysis by titanium dioxide (TiO2) has been recently considered as a new approach to improve the conventional solar water disinfection. This paper discusses the effect of the chemical composition of water on the E. coli photo inactivation. Method of Approach. Ten types of water having a different chemical composition were contaminated by E. coli K12 and exposed to a simulated solar irradiation in the absence of TiO2 (photolysis) and in presence of TiO2 (photocatalysis). Bacteria were monitored by plate count. The durability of disinfection was assessed in terms of the effective disinfection time (EDT) in a subsequent dark period of 24h(EDT24). Natural water from the Leman Lake (LLW), milli-Q water (MQW), MQW containing a mixture of NO3−, PO4−3, SO4−2, Cl− and HCO3−, phosphate buffered saline water, water from the outlet of a biological wastewater treatment plant (WW); MQW containing a mixture of KCl-NaCl and commercial bottled drinking water (CBW) where used to suspend E. coli at laboratory scale. Field scale experiments using solar irradiation in a compound parabolic concentrator (CPC) with E. coli suspended in LLW were also carried out. Results. The sensitivity of bacteria to the phototreatment depends on the nature of the water. Moreover, experiments systematically performed under the solar simulator showed that the order of E. coli inactivation rate and the EDT24 are different for each system. In photolytic systems, E. coli solar inactivation rate is accelerated by the presence in water of NO3− and HCO3− when compared to that observed in MQW. EDT24 was reached at 3h of irradiation for only 3 (WLL, WW1, and CBW) of the ten studied waters. In the presence of TiO2, the rate of the solar disinfection generally increased. However, a negative effect of chemical substances present in water on the E. coli photocatalytic inactivation was observed in waters when compared to MQW. This effect was especially important in the presence of phosphate, and carbonate. EDT24 was less than 2h for the majority of the water types. In the presence of TiO2, a “residual disinfection effect” was observed for samples even when bacterial culturability below the detection limit was not reached after photocatalytic treatment. Solar irradiation in a CPC photoreactor indicates that the presence of TiO2 accelerates the detrimental action of sunlight. The EDT24 was reached before 3h, in photocatalytic experiments but not in those in the absence of TiO2. The influence of TiO2 surface characteristics and charge, as well as the postirradiation events observed in heliophototreated water, in an optimal growth medium are also discussed. Conclusions. The presence of NO3−, HCO3−, PO4−3, SO4−2, Cl−, and HCO3− greatly affects the photolytic and photocatalytic disinfection processes. The natural ions and organic matter affect the solar disinfection of water in the presence and absence of TiO2 and influences the post irradiation events after sunlight illumination. Antagonistic effect in several conditions or synergistic effects in others can be expected when inorganic and/or organic substances are present in phototreated water sources. EDT24 is useful tool for standardization of solar water disinfection. EDT24 values depend on parameters such as the chemical composition of water, light intensity, initial bacterial concentration, and TiO2 concentration.

2014 ◽  
Vol 12 (3) ◽  
pp. 393-398 ◽  
Author(s):  
Cornelius Cano Ssemakalu ◽  
Eunice Ubomba-Jaswa ◽  
Keolebogile Shirley Motaung ◽  
Michael Pillay

Cholera remains a problem in developing countries. This is attributed to the unavailability of proper water treatment, sanitary infrastructure and poor hygiene. As a consequence, countries facing cholera outbreaks rely on interventions such as the use of oral rehydration therapy and antibiotics to save lives. In addition to vaccination, the provision of chlorine tablets and hygiene sensitization drives have been used to prevent new cholera infections. The implementation of these interventions remains a challenge due to constraints associated with the cost, ease of use and technical knowhow. These challenges have been reduced through the use of solar water disinfection (SODIS). The success of SODIS in mitigating the risk associated with the consumption of waterborne pathogens has been associated with solar irradiation. This has prompted a lot of focus on the solar component for enhanced disinfection. However, the role played by the host immune system following the consumption of solar-irradiated water pathogens has not received any significant attention. The mode of inactivation resulting from the exposure of microbiologically contaminated water results in immunologically important microbial states as well as components. In this review, the possible influence that solar water disinfection may have on the immunity against cholera is discussed.


Author(s):  
Guilherme Otávio Rosa e Silva ◽  
Helen Oliveira Loureiro ◽  
Laura Guimarães Soares ◽  
Laura Hamdan de Andrade ◽  
Rana Gabriela Lacerda Santos

Abstract Drinking water consumption is essential to maintain a good quality of life, but it is not available for all communities. Therefore, this work aimed to develop an alternative and accessible process for water treatment, based on filtration and solar disinfection, and evaluate it in both bench and pilot scales. The construction cost of the system was estimated and compared with other available options so that its economic viability could be discussed. For this purpose, water from a stream was collected and analyzed. A filter made of PVC tubes, sand, and gravel was built, acting, respectively, as a column, filtering medium, and support layer. As for the disinfection process, the SODIS (Solar Water Disinfection) methodology was adopted. The water was exposed to the sun, and the best exposure time was determined based on the analysis of total coliforms and E. coli. Finally, a prototype was built for a flow rate of 37.5 L d−1, consisting of two filters operating at a filtration rate of 2.38 m3 m−2 d−1. About 97% turbidity removal was obtained, as well as 99.9% for total coliforms and 99.1% for E. coli. It is estimated that the cost of building a water treatment system for one person is approximately USD 29.00.


2011 ◽  
Vol 63 (6) ◽  
pp. 1130-1136 ◽  
Author(s):  
J. M. Carey ◽  
T. M. Perez ◽  
E. G. Arsiaga ◽  
L. H. Loetscher ◽  
J. E. Boyd

The solar water disinfection method (SODIS) was modified by the addition of a photocatalytic layer of titania on the interior surface of polyethylene terephthalate (PET) and acrylic bottles. Titania was solvent deposited on the interior of commercially available PET bottles, as well as bottles that were constructed from acrylic. Uncoated and titania-coated acrylic bottles removed 3,000,000–5,000,000 colony forming units per milliliter of K12 E. coli from 670 mL of contaminated water in 40 min of solar irradiance. After five hours of sunlight exposure, the concentration of 10 ppm methyl orange (a representative organic water contaminant), was reduced by 61% using the titania-coated acrylic bottles. The concentration of 87 ppb microcystin-LR (a representative algal toxin) was reduced by 70% after 7 hours of sunlight exposure in the titania-coated acrylic bottles. Acrylic is an effective alternative to PET for use in the SODIS method due to its greater UV transparency. The addition of titania to PET and acrylic bottles confers the ability to remove chemical contaminants in addition to inactivating microbiological contaminants.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Juan Rodríguez ◽  
Clido Jorge ◽  
Patricia Zúñiga ◽  
Javier Palomino ◽  
Pedro Zanabria ◽  
...  

Solar water disinfection was performed using TiO2 and a Ru(II) complex as fixed catalysts located in a compound parabolic collector photoreactor. Studies were performed in the laboratory as well as at a greenfield site. Under laboratory conditions, natural water contaminated with cultured bacteria was photocatalytically treated and the influence of the photolysis as well as of both catalysts was studied. Experiments were performed with contaminated water flowing at 12 l/min; under these conditions, photocatalytic experiments performed with a supported heterogeneous photocatalyst (Ahlstrom paper impregnated with TiO2) showed it to be effective in degrading bacteria in water. The Ru complex catalyst, however, showed no clear evidence for disinfecting water, and its efficiency was comparable to the simple photolysis. Under on-site experiments, bacteria contaminated water from the Yaurisque river at Cusco, Peru was treated. As a general trend, after photocatalytic treatment a reduction in the E-coli population present in water was observed. Whenever disinfection was achieved in the experiments, no regrowth of bacteria was observed after 24 h. However, a reduction in the prototype efficiency was observed both in laboratory and on-site experiments. This was ascribed to aging of the photocatalyst as well as due to the deposition of particles onto its surface. In cases in which incomplete disinfection resulted, a low rate of E-coli growth was observed 24 h after ending the experiment. However, pseudomones seem to be resistant to the treatment.


2021 ◽  
Vol 419 ◽  
pp. 129889
Author(s):  
José Moreno-SanSegundo ◽  
Stefanos Giannakis ◽  
Sofia Samoili ◽  
Giulio Farinelli ◽  
Kevin G. McGuigan ◽  
...  

2020 ◽  
Vol 399 ◽  
pp. 125852 ◽  
Author(s):  
Ángela García-Gil ◽  
Rafael Valverde ◽  
Rafael A. García-Muñoz ◽  
Kevin G. McGuigan ◽  
Javier Marugán

Parasitology ◽  
2009 ◽  
Vol 136 (4) ◽  
pp. 393-399 ◽  
Author(s):  
H. GÓMEZ-COUSO ◽  
M. FONTÁN-SAINZ ◽  
J. FERNÁNDEZ-ALONSO ◽  
E. ARES-MAZÁS

SUMMARYSpecies belonging to the generaCryptosporidiumare recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated withCryptosporidium parvumoocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37–50°C), on the excystation ofC. parvumin the absence of other stimuli. In samples exposed to 40–48°C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53·81% of excystation was obtained on exposure of the water to a temperature of 46°C for 12 h (versus8·80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19·38%versus100%). The results demonstrate the important effect of the temperature on the excystation ofC. parvumand therefore on its viability and infectivity.


2021 ◽  
Author(s):  
Paloma Ozores Diez ◽  
M. Inmaculada Polo-López ◽  
Azahara Martínez-García ◽  
Monique Waso ◽  
Brandon Reyneke ◽  
...  

Abstract Solar water disinfection (SODIS) is a cost-effective point of use method for disinfecting water, usually in a 2 L polyethylene terephthalate (PET) plastic bottle. To increase the volume of water disinfected, three novel transparent reactors were developed using PET in 25 L transparent jerrycans, polymethyl methacrylate (PMMA) in tubular solar reactors capable of delivering >20 L of water and polypropylene (PP) in 20 L buckets. In vitro bioassays were used to investigate any toxic substances leached from the plastic reactors into disinfected water as a result of exposure to sunshine for up to 9 months. The Ames test was used to test for mutagenicity and the E-screen bioassay to test for estrogenicity. No mutagenicity was detected in any sample and no estrogenicity was found in the SODIS treated water produced by the PMMA reactors or the PP buckets. While water disinfected using the PET reactors showed no estrogenicity following exposure to the sun for 3 and 6 months, estrogenicity was detected following 9 months' exposure to sunlight; however levels detected were within the acceptable daily intake for 17β-estradiol (E2) of up to 50 ng/kg body weight/day.


Sign in / Sign up

Export Citation Format

Share Document