Effects of Gap Geometry and Gravity on Boiling Around a Constrained Bubble in 2-Propanol/Water Mixtures

Author(s):  
Chen-Li Sun ◽  
Van P. Carey

In this study, boiling experiments were conducted with 2-propanol/water mixtures in confined gap geometry under various levels of gravity. The temperature field created within the parallel plate gap resulted in evaporation over the portion of the vapor-liquid interface of the bubble near the heated surface, and condensation near the cold surface. Full boiling curves were obtained and two boiling regimes — nucleate boiling and pseudo film boiling, the transition condition, and the critical heat flux (CHF), were identified. The observations indicate that the presence of the gap geometry pushed the nucleate boiling regime to a lower superheated temperature range and resulted in correspondingly lower heat flux. With further increases of wall superheat, the vapor generated by the boiling process was trapped in the gap and blanketed the heated surface. This caused premature occurrence of CHF conditions and deterioration of heat transfer in the pseudo film boiling regime. The influence of the confined space was particularly significant when greater Marangoni forces were present at reduced gravity conditions. The value of the CHF for x = 0.025, which corresponded to weaker Marangoni forces, was found to be greater than that of x = 0.015 with a 6.35 mm gap.

2006 ◽  
Vol 129 (2) ◽  
pp. 114-123
Author(s):  
Chen-li Sun ◽  
Van P. Carey

In this study, boiling experiments were conducted with 2-propanol/water mixtures in confined gap geometry under various levels of gravity. The temperature field created within the parallel plate gap resulted in evaporation over the portion of the vapor-liquid interface of the bubble near the heated surface, and condensation near the cold surface. Full boiling curves were obtained and two boiling regimes—nucleate boiling and pseudofilm boiling—and the transition condition, the critical heat flux (CHF), were identified. The observations indicated that the presence of the gap geometry pushed the nucleate boiling regime to a lower superheated temperature range, resulting in correspondingly lower heat flux. With further increases of wall superheat, the vapor generated by the boiling process was trapped in the gap to blanket the heated surface. This caused premature occurrence of CHF conditions and deterioration of heat transfer in the pseudo-film boiling regime. The influence of the confined space was particularly significant when greater Marangoni forces were present under reduced gravity conditions. The CHF value of x (molar fraction)=0.025, which corresponded to weaker Marangoni forces, was found to be greater than that of x=0.015 with a 6.4mm gap.


Author(s):  
Bambang Joko Suroto ◽  
Masahiro Tashiro ◽  
Sana Hirabayashi ◽  
Sumitomo Hidaka ◽  
Masamichi Kohno ◽  
...  

The effects of hydrophobic circle spot size and subcooling on local film boiling phenomenon from the copper surface with single PTFE (Polytetrafluoroethylene) hydrophobic circle spot at low heat flux has been investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0 and 10K. The heat transfer surfaces are used polished copper block with single PTFE hydrophobic circle spot of diameters 2, 4 and 6 mm, respectively. A high-speed camera was used to capture bubble dynamics and disclosed the sequence of the process leading to local film boiling. The result shows that local films boiling occurs on the PTFE circle spot at low heat flux and was triggered by the merging of neighboring bubbles. The study also showed that transition time required for change from nucleate boiling regime to local film boiling regime depends on the diameter of the hydrophobic circle spot and the subcooling. A stable local film boiling occurs at the smallest diameter of hydrophobic spot. Subcooling cause the local film boiling occur at negative superheat and oscillation of bubble dome.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Hyungdae Kim ◽  
Ho Seon Ahn ◽  
Moo Hwan Kim

The pool boiling characteristics of water-based nanofluids with alumina and titania nanoparticles of 0.01 vol % were investigated on a thermally heated disk heater at saturated temperature and atmospheric pressure. The results confirmed the findings of previous studies that nanofluids can significantly enhance the critical heat flux (CHF), resulting in a large increase in the wall superheat. It was found that some nanoparticles deposit on the heater surface during nucleate boiling, and the surface modification due to the deposition results in the same magnitude of CHF enhancement in pure water as for nanofluids. Subsequent to the boiling experiments, the interfacial properties of the heater surfaces were examined using dynamic wetting of an evaporating water droplet. As the surface temperature increased, the evaporating meniscus on the clean surface suddenly receded toward the liquid due to the evaporation recoil force on the liquid-vapor interface, but the nanoparticle-fouled surface exhibited stable wetting of the liquid meniscus even at a remarkably higher wall superheat. The heat flux gain attainable due to the improved wetting of the evaporating meniscus on the fouled surface showed good agreement with the CHF enhancement during nanofluid boiling. It is supposed that the nanoparticle layer increases the stability of the evaporating microlayer underneath a bubble growing on a heated surface and thus the irreversible growth of a hot/dry spot is inhibited even at a high wall superheat, resulting in the CHF enhancement observed when boiling nanofluids.


2001 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
P. M. Carrica ◽  
V. Masson

We present the results of an experimental study of the effects of externally imposed electric fields on boiling heat transfer and critical heat flux (CHF) in dielectric fluids. The study comprises the analysis of geometries that, under the effects of electric fields, cause the bubbles either to be pushed toward the heater or away from it. A local phase detection probe was used to measure the void fraction and the interfacial impact rate near the heater. It was found that the critical heat flux can be either augmented or reduced with the application of an electric field, depending on the direction of . In addition, the heat transfer can be slightly enhanced or degraded depending on the heat flux. The study of the two-phase flow in nucleate boiling, only for the case of favorable dielectrophoretic forces, reveals that the application of an electric field reduces the bubble detection time and increases the detachment frequency. It also shows that the two-phase flow characteristics of the second film boiling regime resemble more a nucleate boiling regime than a film boiling regime.


Author(s):  
Timothy H. Lee ◽  
Dimitrios C. Kyritsis ◽  
Chia-fon F. Lee

Engine-out HC emissions resulting from liquid fuel, which escapes from the combustion process, provides the motivation to better understand the film vaporization in a combustion chamber. Previous work theorized that the removal of liquid fuel from the combustion cycle was a result of the increase in film vaporization time due to the Leidenfrost phenomenon. Currently, KIVA 3V predicts a continuous decrease in vaporization time for piston top films. The objective of this work is to improve the KIVA 3V film vaporization model through the inclusion of established boiling correlations, and thus, the Leidenfrost phenomenon. Experimental results have been reviewed from which expressions encompassing high acceleration effects for the nucleate boiling regime and the film boiling regime were investigated, implemented, and validated. Validation was conducted using published experimental data sets for boiling heat flux. As a result of the implementation, a noticeable increase in heat flux occurred due to high accelerations for films in saturated film boiling in both nucleate and film boiling. Computational simulations were conducted using a semi-infinite plate and a direct-injection spark-ignition engine. The semi-infinite plate provided a controlled environment which could separate the effects of pressure and acceleration on film boiling heat flux, film vaporization rates, and film vaporization times. The effect of decreased film vaporization rates, during the Leidenfrost phenomenon, was observed to decrease with increasing acceleration. Finally, the engine computations were used to provide the first film boiling and film vaporization rates for engine fuel films at temperatures above saturation temperature. As a result of this work, a film vaporization model capable of improved prediction of vaporization rates of piston top films in saturated boiling conditions has been created.


Author(s):  
Tomio Okawa ◽  
Takahito Kamiya

It is known that dispersion of a small amount of nanometer-sized particles in liquid can cause substantial improvement of the critical heat flux in pool boiling. Nanofluids (colloidal suspensions of nanoparticles in a base fluid) may therefore be used as the coolant in industrial applications in which high-heat-flux removal is needed. If it is supposed that the deposition of nanoparticles onto the heated surface during nucleate boiling is the main cause of the CHF enhancement in nanofluids, a certain time period is considered to be necessary for the CHF to be improved. In view of this, preliminary experiments were performed in the present work to investigate the time scale of CHF improvement; here, distilled water was used as a base fluid, and TiO2 and copper were selected as the materials of nanoparticles and heated surface, respectively. Under a particular experimental conditions of nanoparticle concentration and nucleate boiling heat flux (40 mg/l and 500 kW/m2), an approximate time scale of CHF improvement was 10 min; this value might not be negligibly short in some nanofluid applications. The measured time-variations of the wall superheat during the nucleate boiling in nanofluid suggested that longer time periods are required for the CHF enhancement at lower heat fluxes and lower nanoparticle concentrations. In particular, 40 min was not sufficient for the wall superheat to reach a steady-state value at the lowest nanoparticle concentration of tested in this work (9 mg/l).


2000 ◽  
Author(s):  
E. Cabrera ◽  
J. E. Gonzalez

Abstract In this work an experimental study of spray cooling using monodispersed droplet sprays impinging on a flat and heated surface is reported. The aim of the work was to formulate an empirical model describing the heat flux (HF) for the nucleate boiling regime. Monodispersed water droplets with a known diameter and velocity, produced by a droplet generator, were directed toward a heated surface and the heat transfer was registered using a data acquisition system. The resulting high heat flux was investigated as function of the droplets’ diameter and velocity, mass flow rate, ambient pressure, subcooling degree and surface roughness. The resulting matrix of variables investigated in the experiments included; mass flux rate (340 < ṁ″ < 750 kg/m2s), subcooling degree (25 < Tsub < 78 °C), ambient pressure (1 < P < 1.8 bar), and surface roughness (79 < Rt < 5 μm). A generalized correlation was developed for the dimensionless HF as function of the dimensionless mass flow rate, temperature, surface roughness and pressure, along with the Jacob number. The form of the correlation is q ˙ ″ ρ V h f g = 0.245 ( Ja ) 1.038 ( Δ T sub Δ T sat ) 0.491 ( ρ σ m ˙ μ 3 ) 0.133 ( R t D ) 0.0213 ( P P 0 ) 0.291 having a confidence level greater than 95%, the differences between predicted and experimental HF were less than ±19%.


2018 ◽  
Vol 2 ◽  
pp. 63-71
Author(s):  
Nikolai Kobasko ◽  
Anatolii Moskalenko ◽  
Volodymyr Dobryvechir

There is an optimal water concentration of inverse solubility polymers ( 1 %) where in many cases film boiling is absent. Based on accurate experimental data of French and data of authors, it was shown that during quenching from 875 oC in cold water solutions of optimal concentration film boiling is completely absent for those steel parts initial heat flux densities of which are below critical value. It is established that initial heat flux density decreases with increase sizes of tested samples. Initial process of quenching (formation of boundary boiling layer), which makes further history of cooling, is not investigated deeply and widely yet enough. When film boiling is absent, mathematical model includes only transient nucleate boiling process and convection. In this case, cooling time within the transient nucleate boiling process can be calculated using average effective Kondratjev numbers Kn. They were evaluated for inverse solubility polymers depending on their concentration and sizes of tested samples. As a result, an improved technology of hardening large gears and bearing rings is proposed by authors. Its essence consists in interruption of accelerated cooling or turning off agitation of quenchant when dissolving of surface polymeric layer starts. Examples of performing improved technology are provided by authors. Developments can be used by engineers to switch from carburized large gears quenched in oil to gears made of optimal hardenability steel and quenched in water solutions of optimal concentration.


2002 ◽  
Vol 1 (1) ◽  
Author(s):  
P. M. Carrica ◽  
V. Masson

We present the results of an experimental study of the effects of externally imposed electric fields on boiling heat transfer and critical heat flux (CHF) in dielectric fluids. The study comprises the analysis of geometries that, under the effects of electric fields, cause the bubbles either to be pushed toward the heater or away from it. A local phase detection probe was used to measure the void fraction and the interfacial impact rate near the heater. It was found that the critical heat flux can be either augmented or reduced with the application of an electric field, depending on the direction of . In addition, the heat transfer can be slightly enhanced or degraded depending on the heat flux. The study of the two-phase flow in nucleate boiling, only for the case of favorable dielectrophoretic forces, reveals that the application of an electric field reduces the bubble detection time and increases the detachment frequency. It also shows that the two-phase flow characteristics of the second film boiling regime resemble more a nucleate boiling regime than a film boiling regime.


Sign in / Sign up

Export Citation Format

Share Document