On the Dynamic Balancing of Multi-DOF Parallel Mechanisms With Multiple Legs

2006 ◽  
Vol 129 (2) ◽  
pp. 234-238 ◽  
Author(s):  
Yangnian Wu ◽  
Clément M. Gosselin

This paper addresses the dynamic balancing of multi-degree-of-freedom (multi-DOF) parallel mechanisms with multiple legs using the dynamic equivalence between point masses and arbitrary moving platforms. In this technique, proposed elsewhere, the mass and inertia of the moving platform are dynamically replaced by point masses located at the points of attachment of the legs to the platform and the mechanisms are balanced by considering each of the legs independently. In this paper, two, three, and four point masses are respectively discussed for different cases. Finally, some physical interpretations are given.

Author(s):  
Yangnian Wu ◽  
Cle´ment M. Gosselin

This paper systematically presents an effective algorithm for the dynamic balancing of multi-degree-of-freedom parallel mechanisms with multiple legs and the dynamic equivalence between point masses and arbitrary moving platforms. The mass and inertia of the moving platform are replaced by point masses located at the points of attachment of the legs to the platform and the mechanisms are balanced by considering each of the legs independently. The validity and feasibility of this algorithm is first verified both theoretically and using numerical simulations in ADAMS. Two, three and four point masses are respectively discussed for different cases. Finally, some reactionless planar and spatial multi-degree-of-freedom parallel mechanisms synthesized based on this algorithm are given.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


2005 ◽  
Vol 29 (4) ◽  
pp. 541-552 ◽  
Author(s):  
Marc Gouttefarde ◽  
Clément M. Gosselin

The wrench-closure workspace (WCW) of six-degree-of-freedom (DOF) parallel cable-driven mechanisms is defined as the set of poses of the moving platform of the mechanism for which any external wrench can be balanced by tension forces in the cables. This workspace is fundamental in order to analyze and design parallel cable-driven mechanisms. This paper deals with the class of six-DOF mechanisms driven by seven cables. Two theorems, which provide efficient means to test whether a given pose of the moving platform belongs to the WCW, are proposed. One of these two theorems reveals the nature of the boundary of the constant-orientation cross sections of the WCW. Moreover, some of the possible applications of these theorems are discussed and illustrated.


Author(s):  
Daxing Zeng ◽  
Sijun Zhu ◽  
Zhen Huang

This paper presents a family of novel lower-mobility decoupled parallel mechanisms (DPMs), which consists of one 5-DOF (degree of freedom) DPM, two 4-DOF DPMs, three 3-DOF DPMs, and three 2-DOF DPMs. The basic feature of this family is that the moving platform and the fixed base of the DPMs are connected by two limbs and the motion of the moving platform is fully decoupled. Then the constraint screw method is used to analyze the motion feature of all DPMs presented in this paper. The mobility of these DPMs has also been calculated by the Modified Grubler-Kutzbach criterion. All the DPMs in this paper are simple and no computation is required for real-time control.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775415 ◽  
Author(s):  
Alireza Rastegarpanah ◽  
Hamid Rakhodaei ◽  
Mozafar Saadat ◽  
Mohammad Rastegarpanah ◽  
Naresh Marturi ◽  
...  

Stiffness is one of the important parameters for estimating the performance of hybrid parallel robots as it is not constant throughout its workspace. The aim of this study is to provide an optimum path based on maximum stiffness within the workspace of a 9-degree-of-freedom hybrid parallel mechanism configuration, which includes nine linear actuators connecting one stationary and two moving platforms in series. The proposed robot is designed for ankle rehabilitation, where accurate and precise movement of lower extremities is required. The design takes advantage of two important characteristics of parallel robots: stiffness and workspace. The proposed methodology to determine the stiffness of hybrid robot in three single axes is based on calculation of position vector of each actuator in any particular pose, by considering the inverse kinematics of the system, in order to obtain the magnitude and direction of the applied forces. The results obtained from the workspace calculations have been compared with those of two standard parallel mechanisms including a 6-degree-of-freedom hexapod and a tripod with 3 degrees of freedom. The stiffness of the robot has been calculated in simulation and then compared with those of a developed prototype hybrid model in two different case studies.


Author(s):  
Marc Gouttefarde ◽  
Cle´ment M. Gosselin

This paper presents a detailed analysis of the constant-orientation wrench-closure workspace of planar three-degree-of-freedom parallel mechanisms driven by four cables. The constant-orientation wrench-closure workspace is defined as the subset of the plane wherein, for a given orientation of the moving platform, any planar wrench applied on the moving platform can be balanced by the cable-driven mechanism. Based on mathematical observations, this workspace is proved to be the union of two disconnected sets that may or may not exist. Moreover, if the constant-orientation wrench-closure workspace (WCW) exists, its boundary is shown to be composed of portions of conic sections. Then, an algorithm that determines the constant-orientation wrench-closure workspace by means of a graphical representation of its boundary is introduced. Several examples are also included.


2018 ◽  
Vol 10 (5) ◽  
Author(s):  
Long Kang ◽  
Wheekuk Kim ◽  
Byung-Ju Yi

This paper introduces a family of statically balanced five-degree-of-freedom (5DOF) parallel mechanisms (PMs) with kinematic and actuation redundancy. Moving platforms of this family of PMs can provide 4DOF Schönflies motion. Three applications are considered in this work. The first and second applications use kinematic redundancy to avoid parallel singularities and perform an auxiliary grasping task in sequence. The third application incorporates actuation redundancy into a kinematically redundant manipulator to increase the load-carrying capacity. Screw theory was used to derive the Jacobian of the 5DOF PM with kinematic and actuation redundancy. Parallel singularities can be completely alleviated by controlling the orientation of the redundant link, thereby obtaining a large rotational workspace, and actuation redundancy increases the load-carrying capacity. Using a commercially available multibody dynamic simulator, an example of trajectory was performed to illustrate the large rotational workspace of the first and second applications and compare the Euclidean norm of the vector of actuation torque of nonredundant and redundant PMs. Three prototypes were also developed to demonstrate the output motion and static balancing property.


2017 ◽  
Vol 41 (5) ◽  
pp. 922-935
Author(s):  
HongJun San ◽  
JunSong Lei ◽  
JiuPeng Chen ◽  
ZhengMing Xiao ◽  
JunJie Zhao

In this paper, a 3-DOF translational parallel mechanism with parallelogram linkage was studied. According to the space vector relation between the moving platform and the fixed base, the direct and inverse position solutions of this mechanism was deduced through analytical method. In addition, the error of the algorithm was analyzed, and the algorithm had turned out to be effective and to have the satisfactory computational precision. On the above basis, the workspace of this mechanism was found through graphical method, which was compared with that of finding through Monte Carlo method, and there was the feasibility for analyzing the workspace of the mechanism by graphical method. The characteristic of the mechanism was analyzed by comparing the results of two analysis methods, which provided a theoretical basis for the application of the mechanism.


Author(s):  
Alessandro Cammarata ◽  
Rosario Sinatra

This paper presents kinematic and dynamic analyses of a two-degree-of-freedom pointing parallel mechanism. The mechanism consists of a moving platform, connected to a fixed platform by two legs of type PUS (prismatic-universal-spherical). At first a simplified kinematic model of the pointing mechanism is introduced. Based on this proposed model, the dynamics equations of the system using the Natural Orthogonal Complement method are developed. Numerical examples of the inverse dynamics results are presented by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document