A Family of Novel Lower-Mobility Decoupled Parallel Mechanisms

Author(s):  
Daxing Zeng ◽  
Sijun Zhu ◽  
Zhen Huang

This paper presents a family of novel lower-mobility decoupled parallel mechanisms (DPMs), which consists of one 5-DOF (degree of freedom) DPM, two 4-DOF DPMs, three 3-DOF DPMs, and three 2-DOF DPMs. The basic feature of this family is that the moving platform and the fixed base of the DPMs are connected by two limbs and the motion of the moving platform is fully decoupled. Then the constraint screw method is used to analyze the motion feature of all DPMs presented in this paper. The mobility of these DPMs has also been calculated by the Modified Grubler-Kutzbach criterion. All the DPMs in this paper are simple and no computation is required for real-time control.

2020 ◽  
Vol 12 (6) ◽  
Author(s):  
Kefei Wen ◽  
Clément M. Gosselin

Abstract This paper focuses on the forward kinematic analysis of (6 + 3)-degree-of-freedom kinematically redundant hybrid parallel robots. Because all of the singularities are avoidable, the robot can cover a very large orientational workspace. The control of the robot requires the solution of the direct kinematic problem using the actuator encoder data as inputs. Seven different approaches of solving the forward kinematic problem based on different numbers of extra encoders are developed. It is revealed that five of these methods can produce a unique solution analytically or numerically. An example is given to validate the feasibility of these approaches. One of the provided approaches is applied to the real-time control of a prototype of the robot. It is also revealed that the proposed approaches can be applied to other kinematically redundant hybrid parallel robots proposed by the authors.


Author(s):  
Damien Chablat ◽  
Philippe Wenger

This paper is devoted to the kinematic design of a new six degree-of-freedom haptic device using two parallel mechanisms. The first one, called orthoglide, provides the translation motions and the second one, called agile eye, produces the rotational motions. These two motions are decoupled to simplify the direct and inverse kinematics, as it is needed for real-time control. To reduce the inertial load, the motors are fixed on the base and a transmission with two universal joints is used to transmit the rotational motions from the base to the end-effector. Two alternative wrists are proposed (i), the agile eye with three degrees of freedom or (ii) a hybrid wrist made by the assembly of a two-dof agile eye with a rotary motor. The last one is optimized to increase its stiffness and to decrease the number of moving parts.


2004 ◽  
Vol 126 (2) ◽  
pp. 301-306 ◽  
Author(s):  
Qiong Jin ◽  
Ting-Li Yang

The kinematics decoupling for parallel manipulators is studied in this paper. Based on the topological structure characteristics of parallel mechanisms, the internal relationship between kinematics decoupling and basic kinematics chains is revealed, and the basic principle for structural synthesis of topologically decoupled mechanisms is put forward. Using this theory, a group of 3 degree-of-freedom (DOF) partially decoupled manipulators are synthesized. The expected kinematic outputs of these manipulators are 1-DOF translation and 2-DOF rotation, and motions along or about undesired directions do not exist. The kinematics analysis of a newly synthesized manipulator is discussed and the results indicate that the decoupling property of these architectures makes possible reaching real time control and path planning of parallel manipulators.


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


2007 ◽  
Vol 73 (12) ◽  
pp. 1369-1374
Author(s):  
Hiromi SATO ◽  
Yuichiro MORIKUNI ◽  
Kiyotaka KATO

Sign in / Sign up

Export Citation Format

Share Document