Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator-Rotor Axial Gaps—Part I: Three-Dimensional Time-Averaged Flow Field

2006 ◽  
Vol 129 (3) ◽  
pp. 572-579 ◽  
Author(s):  
P. Gaetani ◽  
G. Persico ◽  
V. Dossena ◽  
C. Osnaghi

An extensive experimental analysis on the subject of unsteady flow field in high-pressure turbine stages was carried out at the Laboratorio di Fluidodinamica delle Macchine (LFM) of Politecnico di Milano. The research stage represents a typical modern HP gas turbine stage designed by means of three-dimensional (3D) techniques, characterized by a leaned stator and a bowed rotor and operating in high subsonic regime. The first part of the program concerns the analysis of the steady flow field in the stator-rotor axial gap by means of a conventional five-hole probe and a temperature sensor. Measurements were carried out on eight planes located at different axial positions, allowing the complete definition of the three-dimensional flow field both in absolute and relative frame of reference. The evolution of the main flow structures, such as secondary flows and vane wakes, downstream of the stator are here presented and discussed in order to evidence the stator aerodynamic performance and, in particular, the different flow field approaching the rotor blade row for the two axial gaps. This results set will support the discussion of the unsteady stator-rotor effects presented in Part II (Gaetani, P., Persico, G., Dossena, V., and Osnaghi, C., 2007, ASME J. Turbomach., 129(3), pp. 580–590). Furthermore, 3D time-averaged measurements downstream of the rotor were carried out at one axial distance and for two stator-rotor axial gaps. The position of the probe with respect to the stator blades is changed by rotating the stator in circumferential direction, in order to describe possible effects of the nonuniformity of the stator exit flow field downstream of the stage. Both flow fields, measured for the nominal and for a very large stator-rotor axial gap, are discussed, and results show the persistence of some stator flow structures downstream of the rotor, in particular, for the minimum axial gap. Finally, the flow fields are compared to evidence the effect of the stator-rotor axial gap on the stage performance from a time-averaged point of view.

Author(s):  
P. Gaetani ◽  
G. Persico ◽  
V. Dossena ◽  
C. Osnaghi

An extensive experimental analysis on the subject of unsteady flow field in high pressure turbine stages was carried out at the Laboratorio di Fluidodinamica delle Macchine (LFM) of Politecnico di Milano. The research stage represents a typical modern HP gas turbine stage designed by means of 3D techniques, characterised by a leaned stator and a bowed rotor and operating in high subsonic regime. The first part of the program concerns the analysis of the steady flow field in the stator-rotor axial gap by means of a conventional five-hole probe and a temperature sensor. Measurements were carried out on eight planes located at different axial positions allowing the complete definition of steady flow field both in absolute and relative frame of reference. The evolution of the main flow structures, such as secondary flows and vane wakes, downstream of the stator are here presented and discussed in order to evidence the stator aerodynamic performance and, in particular, the different flow field approaching the rotor blade row for the two axial gaps. This results set will support the discussion of the unsteady stator-rotor effects presented in paper Part II. Furthermore, 3D time-averaged measurements downstream of the rotor were carried out at one axial distance and for two stator-rotor axial gaps. The position of the probe with respect to the stator blades is changed by means of rotating the stator in circumferential direction, in order to describe possible effects of the non-uniformity of the stator exit flow field downstream of the stage. Both flow fields, measured for the nominal and for a very large stator-rotor axial gap, are discussed and results show the persistence of some stator flow structures downstream of the rotor, in particular for the minimum axial gap. Eventually the flow fields are compared to evidence the effect of the stator-rotor axial gap on the stage performance from a time-averaged point of view.


Author(s):  
Huimin Tang ◽  
Shuaiqiang Liu ◽  
Hualing Luo

Profiled endwall is an effective method to improve aerodynamic performance of turbine. This approach has been widely studied in the past decade on many engines. When automatic design optimisation is considered, most of the researches are usually based on the assumption of a simplified simulation model without considering cooling and rim seal flows. However, many researchers find out that some of the benefits achieved by optimization procedure are lost when applying the high-fidelity geometry configuration. Previously, an optimization procedure has been implemented by integrating the in-house geometry manipulator, a commercial three-dimensional CFD flow solver and the optimization driver, IsightTM. This optimization procedure has been executed [12] to design profiled endwalls for a turbine cascade and a one-and-half stage axial turbine. Improvements of the turbine performance have been achieved. As the profiled endwall is applied to a high pressure turbine, the problems of cooling and rim seal flows should be addressed. In this work, the effects of rim seal flow and cooling on the flow field of two-stage high pressure turbine have been presented. Three optimization runs are performed to design the profiled endwall of Rotor-One with different optimization model to consider the effects of rim flow and cooling separately. It is found that the rim seal flow has a significant impact on the flow field. The cooling is able to change the operation condition greatly, but barely affects the secondary flow in the turbine. The influences of the profiled endwalls on the flow field in turbine and cavities have been analyzed in detail. A significant reduction of secondary flows and corresponding increase of performance are achieved when taking account of the rim flows into the optimization. The traditional optimization mechanism of profiled endwall is to reduce the cross passage gradient, which has great influence on the strength of the secondary flow. However, with considering the rim seal flows, the profiled endwall improves the turbine performance mainly by controlling the path of rim seal flow. Then the optimization procedure with consideration of rim seal flow has also been applied to the design of the profiled endwall for Stator Two.


Author(s):  
Marek Pátý ◽  
Sergio Lavagnoli

Abstract The efficiency of modern axial turbomachinery is strongly driven by the secondary flows within the vane or blade passages. The secondary flows are characterized by a complex pattern of vortical structures that origin, interact and dissipate along the turbine gas path. The endwall flows are responsible for the generation of a significant part of the overall turbine loss because of the dissipation of secondary kinetic energy and mixing-out of non-uniform momentum flows. The understanding and analysis of secondary flows requires a reliable vortex identification technique to predict and analyse the impact of specific turbine designs on the turbine performance. However, literature shows a remarkable lack of general methods to detect vortices and to determine the location of their cores and to quantify their strength. This paper presents a novel technique for the identification of vortical structures in a general 3D flow field. The method operates on the local flow field and it is based on a triple decomposition of motion proposed by Kolář. In contrast to a decomposition of velocity gradient into the strain and vorticity tensors, this method considers a third, pure shear component. The subtraction of the pure shear tensor from the velocity gradient remedies the inherent flaw of vorticity-based techniques which cannot distinguish between rigid rotation and shear. The triple decomposition of motion serves to obtain a 3D field of residual vorticity whose magnitude is used to define vortex regions. The present method allows to locate automatically the core of each vortex, quantify its strength and determine the vortex bounding surface. The output may be used to visualize the turbine vortical structures for the purpose of interpreting the complex three-dimensional viscous flow field, as well as to highlight any case-to-case variations by quantifying the vortex strength and location. The vortex identification method is applied to a high-pressure turbine with three optimized blade tip geometries. The 3D flow-field is obtained by CFD computations performed with Numeca FINE/Open. The computational model uses steady-state RANS equations closed by the Spalart-Allmaras turbulence model. Although developed for turbomachinery applications, the vortex identification method proposed in this work is of general applicability to any three-dimensional flow-field.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Marek Pátý ◽  
Sergio Lavagnoli

Abstract The efficiency of modern axial turbomachinery is strongly driven by the secondary flows within the vane or blade passages. The secondary flows are characterized by a complex pattern of vortical structures that origin, interact, and dissipate along the turbine gas path. The endwall flows are responsible for the generation of a significant part of the overall turbine loss because of the dissipation of secondary kinetic energy and mixing out of nonuniform momentum flows. The understanding and analysis of secondary flows requires a reliable vortex identification technique to predict and analyze the impact of specific turbine designs on the turbine performance. However, the literature shows a remarkable lack of general methods to detect vortices and to determine the location of their cores and to quantify their strength. This paper presents a novel technique for the identification of vortical structures in a general 3D flow field. The method operates on the local flow field, and it is based on a triple decomposition of motion proposed by Kolář. In contrast to a decomposition of velocity gradient into the strain and vorticity tensors, this method considers a third, pure shear component. The subtraction of the pure shear tensor from the velocity gradient remedies the inherent flaw of vorticity-based techniques, which cannot distinguish between rigid rotation and shear. The triple decomposition of motion serves to obtain a 3D field of residual vorticity whose magnitude is used to define vortex regions. The present method allows to locate automatically the core of each vortex, to quantify its strength, and to determine the vortex bounding surface. The output may be used to visualize the turbine vortical structures for the purpose of interpreting the complex three-dimensional viscous flow field and to highlight any case-to-case variations by quantifying the vortex strength and location. The vortex identification method is applied to a high-pressure turbine with three optimized blade tip geometries. The 3D flow field is obtained by computational fluid dynamics (CFD) computations performed with Numeca FINE/Open. The computational model uses steady-state Reynolds-averaged Navier–Stokes (RANS) equations closed by the Spalart-Allmaras turbulence model. Although developed for turbomachinery applications, the vortex identification method proposed in this work is of general applicability to any three-dimensional flow field.


Author(s):  
Brian R. Green ◽  
Randall M. Mathison ◽  
Michael G. Dunn

The effect of rotor purge flow on the unsteady aerodynamics of a high-pressure turbine stage operating at design corrected conditions has been investigated both experimentally and computationally. The experimental configuration consisted of a single-stage high-pressure turbine with a modern film-cooling configuration on the vane airfoil as well as the inner and outer end-wall surfaces. Purge flow was introduced into the cavity located between the high-pressure vane and the high-pressure disk. The high-pressure blades and the downstream low-pressure turbine nozzle row were not cooled. All hardware featured an aerodynamic design typical of a commercial high-pressure ratio turbine, and the flow path geometry was representative of the actual engine hardware. In addition to instrumentation in the main flow path, the stationary and rotating seals of the purge flow cavity were instrumented with high frequency response, flush-mounted pressure transducers and miniature thermocouples to measure flow field parameters above and below the angel wing. Predictions of the time-dependent flow field in the turbine flow path were obtained using FINE/Turbo, a three-dimensional, Reynolds-Averaged Navier-Stokes CFD code that had the capability to perform both steady and unsteady analysis. The steady and unsteady flow fields throughout the turbine were predicted using a three blade-row computational model that incorporated the purge flow cavity between the high-pressure vane and disk. The predictions were performed in an effort to mimic the design process with no adjustment of boundary conditions to better match the experimental data. The time-accurate predictions were generated using the harmonic method. Part I of this paper concentrates on the comparison of the time-averaged and time-accurate predictions with measurements in and around the purge flow cavity. The degree of agreement between the measured and predicted parameters is described in detail, providing confidence in the predictions for flow field analysis that will be provided in Part II.


Author(s):  
Markus Schmidt ◽  
Christoph Starke

This article presents results for the coupled simulation of a high-pressure turbine stage in consideration of unsteady hot gas flows. A semi-unsteady coupling process was developed to solve the conjugate heat transfer problem for turbine components of gas turbines. Time-resolved CFD simulations are coupled to a finite element solver for the steady state heat conduction inside of the blade material. A simplified turbine stage geometry is investigated in this paper to describe the influence of the unsteady flow field onto the time-averaged heat transfer. Comparisons of the time-resolved results to steady state results indicate the importance of a coupled simulation and the consideration of the time-dependent flow-field. Different film-cooling configurations for the turbine NGV are considered, resulting in different temperature and pressure deficits in the vane wake. Their contribution to non-linear effects causing the time-averaged heat load to differ from a steady result is discussed to further highlight the necessity of unsteady design methods for future turbine developments. A strong increase in the pressure side heat transfer coefficients for unsteady simulations is observed in all results. For higher film-cooling mass flows in the upstream row, the preferential migration of hot fluid towards the pressure side of a turbine blade is amplified as well, which leads to a strong increase in material temperature at the pressure side and also in the blade tip region.


2006 ◽  
Vol 129 (3) ◽  
pp. 580-590 ◽  
Author(s):  
P. Gaetani ◽  
G. Persico ◽  
V. Dossena ◽  
C. Osnaghi

An extensive experimental analysis was carried out at Politecnico di Milano on the subject of unsteady flow in high pressure (HP) turbine stages. In this paper, the unsteady flow measured downstream of a modern HP turbine stage is discussed. Traverses in two planes downstream of the rotor are considered, and, in one of them, the effects of two very different axial gaps are investigated: the maximum axial gap, equal to one stator axial chord, is chosen to “switch off” the rotor inlet unsteadiness, while the nominal gap, equal to 1/3 of the stator axial chord, is representative of actual engines. The experiments were performed by means of a fast-response pressure probe, allowing for two-dimensional phase-resolved flow measurements in a bandwidth of 80kHz. The main properties of the probe and the data processing are described. The core of the paper is the analysis of the unsteady rotor aerodynamics; for this purpose, instantaneous snapshots of the rotor flow in the relative frame are used. The rotor mean flow and its interaction with the stator wakes and vortices are also described. In the outer part of the channel, only the rotor cascade effects can be observed, with a dominant role played by the tip leakage flow and by the rotor tip passage vortex. In the hub region, where the secondary flows downstream of the stator are stronger, the persistence of stator vortices is slightly visible in the maximum stator-rotor axial gap configuration, whereas in the minimum stator-rotor axial gap configuration their interaction with the rotor vortices dominates the flow field. A good agreement with the wakes and vortices transport models has been achieved. A discussion of the interaction process is reported giving particular emphasis to the effects of the different cascade axial gaps. Some final considerations on the effects of the different axial gap over the stage performances are reported.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Brian R. Green ◽  
Randall M. Mathison ◽  
Michael G. Dunn

The detailed mechanisms of purge flow interaction with the hot-gas flow path were investigated using both unsteady computationally fluid dynamics (CFD) and measurements for a turbine operating at design corrected conditions. This turbine consisted of a single-stage high-pressure turbine and the downstream, low-pressure turbine nozzle row with an aerodynamic design equivalent to actual engine hardware and typical of a commercial, high-pressure ratio, transonic turbine. The high-pressure vane airfoils and inner and outer end walls incorporated state-of-the-art film cooling, and purge flow was introduced into the cavity located between the high-pressure vane and disk. The flow field above and below the blade angel wing was characterized by both temperature and pressure measurements. Predictions of the time-dependent flow field were obtained using a three-dimensional, Reynolds-averaged Navier–Stokes CFD code and a computational model incorporating the three blade rows and the purge flow cavity. The predictions were performed to evaluate the accuracy obtained by a design style application of the code, and no adjustment of boundary conditions was made to better match the experimental data. Part I of this paper compared the predictions to the measurements in and around the purge flow cavity and demonstrated good correlation. Part II of this paper concentrates on the analytical results, looking at the primary gas path ingestion mechanism into the cavity as well as the effects of the rotor purge on the upstream vane and downstream rotor aerodynamics and thermodynamics. Ingestion into the cavity is driven by high static pressure regions downstream of the vane, high-velocity flow coming off the pressure side of the vane, and the blade bow waves. The introduction of the purge flow is seen to have an effect on the static pressure of the vane trailing edge in the lower 5% of span. In addition, the purge flow is weak enough that upon exiting the cavity, it is swept into the mainstream flow and provides no additional cooling benefits on the platform of the rotating blade.


Author(s):  
A. Sipatov ◽  
L. Gomzikov ◽  
V. Latyshev ◽  
N. Gladysheva

The present tendency of creating new aircraft engines with a higher level of fuel efficiency leads to the necessity to increase gas temperature at a high pressure turbine (HPT) inlet. To design such type of engines, the improvement of accuracy of the computational analysis is required. According to this the numerical analysis methods are constantly developing worldwide. The leading firms in designing aircraft engines carry out investigations in this field. However, this problem has not been resolved completely yet because there are many different factors affecting HPT blade heat conditions. In addition in some cases the numerical methods and approaches require tuning (for example to predict laminar-turbulent transition region or to describe the interaction of boundary layer and shock wave). In this work our advanced approach of blade heat condition numerical estimation based on the three-dimensional computational analysis is presented. The object of investigation is an advanced aircraft engine HPT first stage blade. The given analysis consists of two interrelated parts. The first part is a stator-rotor interaction modeling of the investigated turbine stage (unsteady approach). Solving this task we devoted much attention to modeling unsteady effects of stator-rotor interaction and to describing an influence of applied inlet boundary conditions on the blade heat conditions. In particular, to determine the total pressure, flow angle and total temperature distributions at the stage inlet we performed a numerical modeling of the combustor chamber of the investigated engine. The second part is a flow modeling in the turbine stage using flow parameters averaging on the stator-rotor interface (steady approach). Here we used sufficiently finer grid discretization to model all perforation holes on the stator vane and rotor blade, endwalls films in detail and to apply conjugate heat transfer approach for the rotor blade. Final results were obtained applying the results of steady and unsteady approaches. Experimental data of the investigated blade heat conditions are presented in the paper. These data were obtained during full size experimental testing the core of the engine and were collected using two different type of experimental equipment: thermocouples and thermo-crystals. The comparison of experimental data and final results meets the requirements of our investigation.


Sign in / Sign up

Export Citation Format

Share Document