scholarly journals Steady-State Deflection of a Circular Plate Rotating Near Its Critical Speed

1999 ◽  
Vol 66 (4) ◽  
pp. 1015-1017 ◽  
Author(s):  
Jen-San Chen

The steady-state response of a disk spinning near its critical speed and under space-fixed time-invariant load is analyzed by using von Karman’s nonlinear plate model. It is found that as the disk rotates beyond a modified critical speed there exist three steady-state deflections, among which only one is in the same direction as the applied load and is stable in the presence of space-fixed damping.

2021 ◽  
Vol 11 (4) ◽  
pp. 1717
Author(s):  
Gilberto Gonzalez Avalos ◽  
Noe Barrera Gallegos ◽  
Gerardo Ayala-Jaimes ◽  
Aaron Padilla Garcia

The direct determination of the steady state response for linear time invariant (LTI) systems modeled by multibond graphs is presented. Firstly, a multiport junction structure of a multibond graph in an integral causality assignment (MBGI) to get the state space of the system is introduced. By assigning a derivative causality to the multiport storage elements, the multibond graph in a derivative causality (MBGD) is proposed. Based on this MBGD, a theorem to obtain the steady state response is presented. Two case studies to get the steady state of the state variables are applied. Both cases are modeled by multibond graphs, and the symbolic determination of the steady state is obtained. The simulation results using the 20-SIM software are numerically verified.


Author(s):  
T. N. Shiau ◽  
E. K. Lee ◽  
T. H. Young ◽  
W. C. Hsu

This paper investigates the dynamic behaviors of a geared rotor-bearing system mounted on viscoelastic supports under considerations of the gear eccentricity, excitation of the gear’s transmission error and the residual shaft bow. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The coupling effect of lateral and torsional motions is considered in the system dynamic analysis. The investigated dynamic characteristics include system natural frequencies and steady-state response. The results show that the mass, the stiffness and the loss factor of the viscoelastic support will significantly affect system critical speeds and steady-state response. Larger loss factor and more rigid stiffness of the viscoelastic supports will suppress the systematic amplitude of resonance. Parameters, which include magnitude of the residual bow and phase angle, are also considered in the investigation of their effects on system critical speeds and steady-state response. Results show that they have tremendous influence on first critical speed when the geared system mounted on stiff viscoelastic supports. The transmission error of the gear mesh is assumed to be sinusoidal with tooth passing frequency and it will induce multiple low resonant frequencies in the system response. It is observed that the excited critical speed equals to the original critical speed divided by gear tooth number.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Riccardo Trinchero ◽  
Igor S. Stievano ◽  
Flavio G. Canavero

We focus on the simulation of periodically switched linear circuits. The basic notation and theoretical framework are presented, with emphasis on the differences between the linear time-invariant and the time-varying cases. For this important class of circuits and sources defined by periodic signals, the computation of their steady-state response is carried out via the solution of an augmented time-invariant MNA equation in the frequency-domain. The proposed method is based on the expansion of the unknown voltages and currents in terms of Fourier series and on the automatic generation of augmented equivalents of the circuit components. The above equivalents along with the information on circuit topology allow creating, via circuit inspection, a time-invariant MNA equation, the solution of which provides the coefficients of both the time- and the frequency-domain responses of the circuit. Analytical and numerical examples are used to stress the generality and benefits of the proposed approach.


2002 ◽  
Vol 13 (05) ◽  
pp. 260-269 ◽  
Author(s):  
Barbara Cone-Wesson ◽  
John Parker ◽  
Nina Swiderski ◽  
Field Rickards

Two studies were aimed at developing the auditory steady-state response (ASSR) for universal newborn hearing screening. First, neonates who had passed auditory brainstem response, transient evoked otoacoustic emission, and distortion-product otoacoustic emission tests were also tested with ASSRs using modulated tones that varied in frequency and level. Pass rates were highest (> 90%) for amplitude-modulated tones presented at levels ≥ 69 dB SPL. The effect of modulation frequency on ASSR for 500- and 2000-Hz tones was evaluated in full-term and premature infants in the second study. Full-term infants had higher pass rates for 2000-Hz tones amplitude modulated at 74 to 106 Hz compared with pass rates for a 500-Hz tone modulated at 58 to 90 Hz. Premature infants had lower pass rates than full-term infants for both carrier frequencies. Systematic investigation of ASSR threshold and the effect of modulation frequency in neonates is needed to adapt the technique for screening.


Sign in / Sign up

Export Citation Format

Share Document